<p>The use for a readability classification model is mainly as an integrated part of an information retrieval system. By matching the user's demands of readability to the documents with the corresponding readability, the classification model can further improve the results of, for example, a search engine. This thesis presents a new solution for classification into readability levels for Swedish. The results from the thesis are a number of classification models. The models were induced by training a Support Vector Machines classifier on features that are established by previous research as good measurements of readability. The features were extracted from a corpus annotated with three readability levels. Natural Language Processing tools for tagging and parsing were used to analyze the corpus and enable the extraction of the features from the corpus. Empirical testings of different feature combinations were performed to optimize the classification model. The classification models render a good and stable classification. The best model obtained a precision score of 90.21\% and a recall score of 89.56\% on the test-set, which is equal to a F-score of 89.88.</p> / <p>Uppsatsen beskriver utvecklandet av en klassificeringsmodell för Svenska texter beroende på dess läsbarhet. Användningsområdet för en läsbaretsklassificeringsmodell är främst inom informationssökningssystem. Modellen kan öka träffsäkerheten på de dokument som anses relevanta av en sökmotor genom att matcha användarens krav på läsbarhet med de indexerade dokumentens läsbarhet. Resultatet av uppsatsen är ett antal modeller för klassificering av text beroende på läsbarhet. Modellerna har tagits fram genom att träna upp en Support Vector Machines klassificerare, på ett antal särdrag som av tidigare forskning har fastslagits vara goda mått på läsbarhet. Särdragen extraherades från en korpus som är annoterad med tre läsbarhetsnivåer. Språkteknologiska verktyg för taggning och parsning användes för att möjliggöra extraktionen av särdragen. Särdragen utvärderades empiriskt i olika särdragskombinationer för att optimera modellerna. Modellerna testades och utvärderades med goda resultat. Den bästa modellen hade en precision på 90,21 och en recall på 89,56, detta ger en F-score som är 89,88. Uppsatsen presenterar förslag på vidareutveckling samt potentiella användningsområden.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7132 |
Date | January 2006 |
Creators | Larsson, Patrik |
Publisher | Uppsala University, Department of Linguistics and Philology, Uppsala : Institutionen för lingvistik och filologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, text |
Page generated in 0.0021 seconds