Return to search

Predicting Student Performance Using Machine Learning: A Comparative Study Between Classification Algorithms

Forskningsfrågan i denna avhandling var att utvärdera och jämföra två ML-algoritmer som var Support Vector Machine (SVM) och Artificial Neural Network (ANN) i termer av noggrannhet, precision, återkallelse, f1-poäng och förutsägelse när de tränades för att klassificera binära datamängder. Datauppsättningen hämtades från Ladok och bestod av anonyma högskolestudenter från en mängd kurser. Algoritmerna kördes på TensorFlow med Keras som API och byggdes, tränades och kördes för utvärdering, allt på Google Colab. Källkoden skrevs i Python. Det icke-tekniska målet med studien var att försöka hitta ett förutsägelsemönster för studentprestationer och tillhandahålla ett tekniskt ramverktyg för att ge feedback till studenter och universitetsfakulteten. Forskningsfrågan delades upp i tre separata delfrågor. Den första var om ML-algoritmerna var ett lämpligt sätt att hitta dessa elevmönster och den kunskap man fick var att ja eftersom dessa algoritmer var lämpliga för den lilla datauppsättningsstorleken. Den andra handlade om hur man implementerar SVM och ANN och det löstes med TensorFlow med Keras API. Den tredje handlade om mängden som behövdes för att dra slutsatserna och förutsäga dessa algoritmer, och det fastställdes att storleken var tillräcklig på grund av att den tränade noggrannheten var högre än baslinjenoggrannheten i båda algoritmerna. Den huvudsakliga forskningsfrågan resulterade i att SVM-modellen överträffade ANN-modellen vad gäller alla nämnda parametrar. Detta teoretiserades på grund av att SVM har linjärt ökande multiparameter som matchade de ökade ingångarna. Detta var inte fallet med strukturen för ANN. / The research question of this thesis was to evaluate and compare two ML algorithms which were Support Vector Machine (SVM) and Artificial Neural Network (ANN) in terms of accuracy, precision, recall, f1 score, and prediction when trained for classifying binary datasets. The dataset was fetched from Ladok and consisted of anonymous higher education student credit from a multitude of courses. The algorithms were run on TensorFlow with Keras as an API and were built, trained, and run for evaluation all on Google Colab. The source-code was written in Python. The non-technical goal of the study was to try to find a prediction pattern for student performance and provide a technical framework tool to provide feedback for student and university faculty. The research question was broken down into three separate sub questions. The first one was if the ML algorithms were an appropriate way to find these student patterns and the knowledge gained was that yes because theses algorithms were appropriate for the small dataset size. The second one was about how to implement SVM and ANN and that was solved using TensorFlow with Keras API. The third one was about the amount needed to draw the conclusions and prediction these algorithms would make, and it was determined that the size was sufficient due to the trained accuracy being higher that the baseline accuracy in both algorithms. The main research question resulted in the SVM model outperforming the ANN model in terms of all the parameters mentioned. This was theorized due to the nature of SVM having linearly increasing multiparameter that that matched the increased inputs. This was not the case with the structure of the ANN.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-45356
Date January 2022
CreatorsHayder, Alabbas
PublisherMittuniversitetet, Institutionen för informationssystem och –teknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds