Massive MIMO communication systems have been highlighted as the main technology for physical layer of next generation communication standards, like 5G. While conventional communication between BS and its covered users is performed in orthogonal time-frequency resources, the improved interuser interference mitigation capability provided by the large number of BS antennas enables the BS to communicate with several users in the same time-frequency resource. This better usage of available but scarce spectrum elevates the spectral efficiency to very appreciable levels, and has a similar effect on energy efficiency, since the transmit power is not increased. On the other hand, if the objective is to provide a target performance for the users, the required transmit power in both direct and reverse links can be made inversely proportional to the number of BS antennas employed. In this Doctoral Thesis, several important aspects of massive MIMO systems are systematically investigated aiming to improve their energy and spectral efficiencies. We can enumerate our main contributions as follows. Considering a cellular massive MIMO network, we proposed an optimized assignment policy of training sequences to the users, which is then combined with suitable power control algorithms. We have also investigated the adoption of alternative waveforms in this scenario, such as single-carrier transmission, in order to overcome the issues of conventional OFDM. Our contributions in this topic are to derive analytical performance expressions for a time-domain single-carrier equalizer taking advantage of the large number of BS antennas, and to evaluate and compare the total energy efficiency of OFDM versus single-carrier massive MIMO systems. Finally, considering crowded massive MIMO networks, composed by both human users as well as machine-type communication devices, we proposed an improved random access protocol aiming to decrease the average number of access attempts for the users and decreasing the probability of failed access attempts. / Sistemas de comunicação de múltiplas antenas (multiple-input multiple-output - MIMO) têm se destacado como a principal tecnologia para a camada física dos padrões de comunicação da próxima geração, como o 5G. Enquanto a comunicação convencional entre a estação base (base station - BS) e seus usuários atendidos é realizada em recursos ortogonais de tempo-frequência, a grande capacidade de redução da interferência interusuários possibilitada pelo grande número de antenas da BS habilita a BS a se comunicar com diversos usuários no mesmo recurso tempo-frequência. Este melhor uso do escasso espectro disponível eleva a eficiência espectral a níveis muito apreciáveis, e tem um efeito similar na eficiência energética, pois a potência de transmissão não é aumentada. Por outro lado, se o objetivo é fornecer um desempenho desejado para os usuários, a potência de transmissão necessária em ambos os enlaces direto e reverso pode ser feita inversamente proporcional ao número de antenas na BS. Nesta Tese de Doutorado, diversos aspectos importantes de sistemas MIMO massivo são sistematicamente investigados com o objetivo de melhorar suas eficiências energética e espectral. Pode-se enumerar as principais contribuições alcançadas como se segue. Considerando uma rede celular MIMO massivo, propõe-se uma política de atribuição de sequências de treinamento aos usuários otimizada, a qual é depois combinada com apropriados algoritmos de controle de potência. Também investiga-se a adoção neste cenário de formas de onda alternativas, tal como a transmissão de portadora única, visando superar as deficiências da convencional multiplexagem por divisão de portadoras ortogonais (orthogonal frequency-division multiplexing - OFDM). As principais contribuições obtidas neste tema são derivar expressões de desempenho analíticas para um equalizador de portadora única no domínio do tempo que aproveita o grande número de antenas na BS, e avaliar e comparar a eficiência energética total de sistemas MIMO massivo OFDM versus portadora única. Finalmente, considerando redes MIMO massivo sobrecarregadas, compostas por usuários humanos bem como dispositivos de comunicação do tipo máquina, propõe-se um protocolo de acesso aleatório melhorado visando diminuir o número médio de tentativas de acesso para os usuários e diminuir a probabilidade de falhas de tentativa de acesso.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03102018-142636 |
Date | 27 August 2018 |
Creators | José Carlos Marinello Filho |
Contributors | Taufik Abrão, Cristiano Magalhaes Panazio, Celso de Almeida, Marcio Eisencraft, Jaime Portugheis, Richard Demo Souza |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds