L'objecte del nostre estudi és el sistema del pèndol simple amb una pertorbació ràpidament oscil·lant de període petit respecte el temps, però el paràmetre de pertorbació no serà necessàriament petit. El període de la pertorbació serà un paràmetre important del sistema.Aquest tipus de sistemes es comporten com propers a integrables tot i que la pertorbació no sigui petita, perquè les zones caòtiques esdevenen exponencialment petites quan el període tendeix a zero. Concretament, centrem l'interès en el trencament de les separatrius i, per tenir una idea de la magnitud d'aquestes zones caòtiques, mesurem la separació entre les varietats invariants estable i inestable associades a l'òrbita periòdica hiperbòlica. Aquestes varietats bidimensionals poden representar-se com a grafs de les derivades d'unes funcions analítiques, que són dues solucions particulars de l'equació en derivades parcials de Hamilton-Jacobi.Amb un canvi de variables adequat al pla complex que ens porti prop de la singularitat de l'òrbita homoclínica del sistema no pertorbat, és possible aïllar a l'equació de Hamilton Jacobi una part dominant independent del paràmetre singular, anomenada Equació Inner. Mitjançant la Teoria de la Ressurgència, a partir de dues solucions particulars d'aquesta equació, calculem la separació entre varietats invariants en primer ordre del període. La diferència entre les dues funcions que representen les dues varietats invariants és solució d'una equació en derivades parcials lineal homogènia, de la qual, per redreçament del flux, es demostra que les seves solucions fitades a una certa banda vertical complexa són exponencialment petites al camp real. Usant tècniques de matching complex, obtenim tant la fita d'aquesta diferència com el canvi de variables que redreça el flux.Si el paràmetre pertorbatiu és una potència p del període, els resultats als quals hem arribat confirmen, en els casos que p està entre 0 i 2 que encara quedaven pendents, el terme dominant de la distància entre varietats que preveu el mètode pertorbatiu de Poincaré-Melnikov En qualsevol cas, obtenim una fórmula asimptòtica per a aquesta distància per a períodes petits, amb el paràmetre pertorbatiu independent del període. / The subject matter of our survey is the rapidly forced pendulum with Hamiltonian function periodic on time with small period, but the parameter of the perturbation is not necessarily small. The period becomes an important parameter of the dynamical suystem.These kinds of systems behave like nearly integrable even though the perturbation is not small, because the chaotic zones become exponentially small when the period tends to be zero. In concrete, we focus our interest on the splitting of separatrices and, in order to have an idea of the magnitude of the chaotic zones, we study the distance between the stable and unstable invariant manifolds associated to the hyperbolic periodic orbit. These two-dimensional manifolds can be represented by the graphs of the differentials of some analytic functions, which are two particular solutions of the Hamilton-Jacobi Equation. A suitable change of variables leads to a complex region close to the singularity of the homoclinic orbit of the unperturbed system. Having performed this change in the Hamilton Jacobi Equation, we can take the dominant part, which is independent of the singular parameter and obtain the so-called Inner Equation. Through the Resurgence Theory, and from two particular solutions of this equation, we compute the distance between the invariant manifolds in first order of the period.The difference between the two functions which represent the two invariant manifolds is a solution of a homogeneous linear partial differential equation. By straightening the vector field, we prove that its bounded solutions in a certain vertical complex strip are exponentially small in the real field. Using complex matching techniques, we obtain not only a bound of this difference, but also the change of variables that straightens the vector field. If the parameter of the perturbation is a power p of the period, our result corroborates the dominant term for the distance provided for the perturbative method of Poincaré-Melnikov when 0<p<2, undecided cases until now. In any case, we obtain an asymptotic expression for the distance when the period is small and the other parameter is independent of it.
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/5848 |
Date | 10 July 2006 |
Creators | Olivé Farré, Carme |
Contributors | Martínez-Seara i Alonso, M. Teresa (Maria Teresa), Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | Catalan |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. |
Page generated in 0.0046 seconds