Return to search

Engineering of Surfaces by the Use of Detonation Nanodiamonds

The main objective of this work was to manufacture and to characterize detonation nanodiamond (ND) coatings with high biocompatibility and high drug loading capability. This was achieved via the integration of functionalized NDs into standard coating systems. The examination of cell proliferation and cell differentiation supported the biological assessment of the ND-enhanced coatings. As a first step, an osteogenic peptide was covalently grafted onto oxidized NDs. Accordingly, carboxylic acid derivativ is were generated on the as-received ND surface via an optimized heat treatment. The osteogenic peptide was tethered to the oxidized ND surface using a carbodiimide crosslinking method. The multifaceted ND preparation and disaggregation facilitated the powder handling during the conjugation process. Moreover, antibiotics were physisorbed onto
as-received NDs to add antimicrobial properties. The correlated surface loading of NDs was determined using various absorption spectroscopy methods such as fluorescence and ultraviolet-visible spectroscopy.
Peptide-conjugated NDs and NDs with untreated surface chemistry have been immobilized on different biomaterials using liquid phase deposition techniques. Herein, polyelectrolyte multilayers (PEMs) were utilized, among others, due to their self-organization and universal applicability for numerous substrates. In order to assess the cell-material interactions, human fetal osteoblasts (hFOBs) were cultured. The hFOBs exhibited a high cell proliferation, high cell density, and sound cellular adhesion, which proves the high biocompatibility of PEMs containing NDs. The present study represents a novel and reliable strategy towards a public approved composite coating. The potential of NDs as a biocompatible delivery platform and as a coating material for biomaterials has been demonstrated. This technology will be useful for the development and optimization of next-generation drug delivery vehicles, e.g. drug-eluting coatings, as well as for biomaterials in general.:Abstract i
Kurzfassung iii
List of Figures v
List of Tables vi
Abbreviations vii
1 Introduction and Objectives 1
1.1 Scope of the Thesis 3
2 Fundamentals 9
2.1 Overview of Biomaterials 9
2.2 Surface Modification Techniques of Biomaterials 11
2.3 Cellular Response to Tailored Biomaterials 13
2.4 Essential Features of Detonation Nanodiamonds 15
2.4.1 Biomedical Applications 16
2.4.2 Chemical Functionalization Pathways 19
2.4.3 Colloidal Stability 21
3 Materials and Methods 25
3.1 Wet Chemical and High-temperature Oxidation of Detonation Nanodiamonds 26
3.2 Disaggregation of Detonation Nanodiamond Agglomerates 26
3.3 Grafting of Biomolecules onto Detonation Nanodiamonds 27
3.4 Macroscopic Surface Modification of Biomaterials 28
3.5 Characterization Techniques 30
3.5.1 Morphology 30
3.5.2 Colloidal Stability and ND Crystal Structure 30
3.5.3 ND Surface Chemistry and Surface Loading 31
3.5.4 Alkaline Phosphatase Activity of Human Mesenchymal Stem Cells 31
3.5.5 Cell Viability and Immunofluorescence Staining of Human Fetal Osteoblasts 32
4 Surface Modification of Detonation Nanodiamonds 35
4.1 Comparison of Wet Chemical and High-temperature Oxidation 35
4.1.1 Absorption Spectroscopy 35
4.1.2 Crystal Structure of Dry-oxidized NDs 37
4.2 Chemisorption of Bone Morphogenetic Protein-2 Derived Peptide 38
4.3 Physisorption of Amoxicillin 42
4.4 Conclusions 44
5 Coatings Exhibiting Detonation Nanodiamonds 47
5.1 Colloidal Stability of Aqueous ND Suspensions 47
5.1.1 ND Agglomerate Size and Zeta Potential Measurement 47
5.1.2 Influence of pH and Ion Concentration 50
5.2 Electrophoretic Deposition and Covalent Attachmen 51
5.3 Polyelectrolyte Multilayers 55
5.4 Conclusions 56
6 Biological Assessment of Detonation Nanodiamond Coatings 59
6.1 Alkaline Phosphatase Activity of Mesenchymal Stem Cells 59
6.2 Cellular Response of Osteoblasts 61
6.2.1 Cell Morphology 61
6.2.2 Cell Adhesion . 64
6.2.3 Cell Viability 66
6.3 Conclusions 68
7 Summary and Outlook 71
Acknowledgements 77
References 79
Appendix 109
List of Publications 113 / Das Hauptziel der Arbeit bestand in der Herstellung sowie der Charakterisierung von Beschichtungen aus Detonationsnanodiamanten (ND), welche eine hohe Biokompatibilität und eine hoheWirkstoffbeladbarkeit aufweisen sollten. Dieses Ziel wurde durch die Integration funktionalisierter ND in herkömmliche Beschichtungssysteme erreicht. Die biologische Beurteilung von den ND-verstärkten Beschichtungen wurde durch Untersuchungen der Zellproliferation und der Zelldifferenzierung untermauert. Im ersten Schritt wurde ein Peptid mit knochenbildenden Eigenschaften kovalent an oxidierte ND angebunden. Mittels einer optimierten Wärmebehandlung wurden Carbonsäurederivate auf der ND-Oberfläche erzeugt. Anschließend wurde das Peptid unter Verwendung eines Carbodiimid-Vernetzungsmittels an die oxidierte ND-Oberfläche angebunden. Während des Konjugationsprozesses erleichterte die facettenreiche ND-aufbereitung und -disaggregation die Pulverhandhabung. Außerdem wurden Antibiotika auf den ND adsorbiert, um antimikrobielle Eigenschaften zu erzeugen. Die entsprechende Oberflächenbeladung der ND wurde unter Verwendung verschiedener absorptionsspektroskopischer
Ansätze wie Fluoreszenz- und UV/Vis-Spektroskopie bestimmt. Biofunktionale und unbehandelte ND wurden über Flüssigphasenabscheidung auf verschiedene Biomaterialien aufgebracht. Hierbei wurden unter anderem Polyelektrolyt-Mehrschichtsysteme aufgrund ihrer Selbstorganisation und universellen Anwendbarkeit auf zahlreiche Substrate eingesetzt. Um die Zellantwort auf die mehrschichtigen ND zu bewerten, wurden humane Osteoblasten (hFOB) kultiviert. Die hFOB zeigten eine hohe Zellproliferation, eine hohe Zelldichte und eine hohe Zelladhäsion, was die hohe Biokompatibilität von mehrschichtigen ND belegt. Die vorliegende Arbeit stellt eine neuartige und zuverlässige Strategie für eine allgemein anerkannte Verbundbeschichtung dar. Das Potenzial von ND als biokompatible Medikamententräger und als Beschichtungsmaterial für Biomaterialien konnte aufgezeigt werden. Die dargestellte Technologie kann für die Entwicklung und Optimierung von Medikamententrägern der nächsten Generation,
z. B. in arzneimittelfreisetzenden Beschichtungen, sowie für Biomaterialien im Allgemeinen verwendet werden.:Abstract i
Kurzfassung iii
List of Figures v
List of Tables vi
Abbreviations vii
1 Introduction and Objectives 1
1.1 Scope of the Thesis 3
2 Fundamentals 9
2.1 Overview of Biomaterials 9
2.2 Surface Modification Techniques of Biomaterials 11
2.3 Cellular Response to Tailored Biomaterials 13
2.4 Essential Features of Detonation Nanodiamonds 15
2.4.1 Biomedical Applications 16
2.4.2 Chemical Functionalization Pathways 19
2.4.3 Colloidal Stability 21
3 Materials and Methods 25
3.1 Wet Chemical and High-temperature Oxidation of Detonation Nanodiamonds 26
3.2 Disaggregation of Detonation Nanodiamond Agglomerates 26
3.3 Grafting of Biomolecules onto Detonation Nanodiamonds 27
3.4 Macroscopic Surface Modification of Biomaterials 28
3.5 Characterization Techniques 30
3.5.1 Morphology 30
3.5.2 Colloidal Stability and ND Crystal Structure 30
3.5.3 ND Surface Chemistry and Surface Loading 31
3.5.4 Alkaline Phosphatase Activity of Human Mesenchymal Stem Cells 31
3.5.5 Cell Viability and Immunofluorescence Staining of Human Fetal Osteoblasts 32
4 Surface Modification of Detonation Nanodiamonds 35
4.1 Comparison of Wet Chemical and High-temperature Oxidation 35
4.1.1 Absorption Spectroscopy 35
4.1.2 Crystal Structure of Dry-oxidized NDs 37
4.2 Chemisorption of Bone Morphogenetic Protein-2 Derived Peptide 38
4.3 Physisorption of Amoxicillin 42
4.4 Conclusions 44
5 Coatings Exhibiting Detonation Nanodiamonds 47
5.1 Colloidal Stability of Aqueous ND Suspensions 47
5.1.1 ND Agglomerate Size and Zeta Potential Measurement 47
5.1.2 Influence of pH and Ion Concentration 50
5.2 Electrophoretic Deposition and Covalent Attachmen 51
5.3 Polyelectrolyte Multilayers 55
5.4 Conclusions 56
6 Biological Assessment of Detonation Nanodiamond Coatings 59
6.1 Alkaline Phosphatase Activity of Mesenchymal Stem Cells 59
6.2 Cellular Response of Osteoblasts 61
6.2.1 Cell Morphology 61
6.2.2 Cell Adhesion . 64
6.2.3 Cell Viability 66
6.3 Conclusions 68
7 Summary and Outlook 71
Acknowledgements 77
References 79
Appendix 109
List of Publications 113

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71556
Date22 July 2020
CreatorsBalakin, Sascha
ContributorsCuniberti, Gianaurelio, Wiesmann, Hans-Peter, Yeo, Jong-Souk, Technische Universität Dresden, Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1088/1748-605X/ab9baf., 10.1088/1361-6528/ab6d9b, 10.1016/j.carbon.2019.05.064, 10.3390/app9061064

Page generated in 0.0025 seconds