The achievable accuracy of hygrothermal building component simulation is significantly dependent on the applied material functions. These functions are determined by the material modelling marking the connection between the basic storage and transport parameters which are obtained from basic measurements, and the storage and transport coefficients which are defined within the balance and flow equations. It is the aim of the present study to develop a flexible and widely applicable material model which is not restricted to the current level of the transport theory. Furthermore, limits and options of this model are to be validated by means of four building materials on the basis of special transient moisture profile measurements. The study’s starting point is a comprehensive investigation of both, the different existing modelling approaches and the available experimental methods to determine basic hygrothermal material parameters. On this basis, the material modelling is set into the context of the heat and moisture transport theory derived from thermodynamics. The involved limits and restrictions are highlighted and options as well as requirements for further developments are pointed out. The developments this study focuses on comprise three fields: experiments for basic property determination, material modelling, and experiments for material model validation. The set of basic material investigation methods has been extended by the drying experiment under defined conditions. The different influences on the drying as well as its application to hygrothermal material model calibration are pointed out and appraised. On this basis, a drying apparatus is designed, built and applied. Ultimately, standardisation criteria and the derivation of a single-value drying coefficient are evaluated. Appropriate extensions are indicated. Based on the bundle of tubes approach, an own material model is developed. It is coupled with a mechanistical approach accounting for serial and parallel structured moisture transport phenomena. The derived liquid water conductivity is adjusted by the help of measured conductivity data close to saturation as well as within the hygroscopic moisture range. Subsequently, two internal modelling parameters are calibrated which is done by numerical simulation of the water uptake and the drying experiment under consideration of the hysteresis of moisture storage. Facilitating its application to the obtained laboratory data, the material model has been implemented into a computer program. It is applied to the four building materials brick, lime-sand brick, aerated concrete and calcium silicate. The adjusted material functions are shown and discussed. In all four cases, the calibration provides an excellent agreement between measured and calculated material behaviour. As experimental basis of the material model validation, the instantaneous profile measurement technique (IPM) has been extended to be applied in Building Physics. Special equipment is developed and measurement procedures are designed. Different models to derive the water content from dielectric data obtained by Time Domain Reflectometry (TDR) measurements are evaluated and implemented. Ultimately, an extensive program of transient moisture profile measurements within the hygroscopic and the overhygroscopic moisture content range is conducted and evaluated. Within the frame of validation, the developments on the experimental as well as on the modelling fields are combined. The IPM experiments are recalculated on the basis of the measured initial and boundary conditions applying the adjusted and calibrated material functions. The comparison of measured and calculated data reveals the power of the developed material modelling just as the consequences of the simplifications made on the transport theory level. The distinct influences of the hysteresis of moisture storage consisting of effects depending on the process history and effects depending on the process dynamics, are proven. By the presented study, the material modelling has been decisively further developed, the set of basic measurement methods has been extended by a substantial experiment and the instantaneous profile measurement technique has been made applicable to Building Physics. Moreover, the influences of the process history and the process dynamics on the moisture transport and the resulting moisture profiles could be shown and proven. By that, not only a material model is now available which perfectly applies to the requirements of flexibility, applicability and extendability. The obtained data provides also a powerful basis for further research and development. / Die Genauigkeit hygrothermischer Bauteilsimulation hängt maßgeblich von den verwendeten Materialfunktionen ab. Sie werden durch die Materialmodellierung bestimmt, welche die Verbindung zwischen den aus Basisexperimenten gewonnenen Speicher- und Transportparametern sowie den innerhalb der Bilanz- und Flussgleichungen definierten Speicher- und Transportkoeffizienten herstellt. Ziel der vorliegenden Arbeit ist zum einen die Entwicklung eines flexiblen, breit anwendbaren und gleichzeitig nicht auf den gegenwärtigen Stand der Transporttheorie beschränkten Materialmodells. Dessen Grenzen und Möglichkeiten sollen zum anderen auf der Grundlage spezieller instationärer Feuchteprofilmessungen anhand von vier Baustoffen untersucht und aufgezeigt werden. Ausgangspunkt der Arbeit ist eine ausführliche Beleuchtung sowohl der vorhandenen Modellansätze als auch der zur Verfügung stehenden experimentellen Methoden zur Bestimmung hygrothermischer Basisparameter. Auf dieser Grundlage wird die Materialmodellierung in den Kontext der aus der Thermodynamik abgeleiteten Wärmeund Feuchtetransporttheorie eingeordnet. Die damit verbundenen Grenzen und Einschränkungen werden hervorgehoben und Entwicklungsmöglichkeiten sowie weiterer Entwicklungsbedarf aufgezeigt. Dieser umfasst drei Bereiche: die Experimente zur Bestimmung von Basisparametern, die Materialmodellierung, sowie Experimente zur Modellvalidierung. Die Reihe der Basisexperimente wird um den Trocknungsversuch unter definierten Bedingungen erweitert. Die verschiedenen Einflüsse auf die Trocknung und deren Anwendung in der Kalibrierung hygrothermischer Materialmodellierung werden herausgestellt und bewertet. Darauf aufbauend wird eine Apparatur entworfen, gebaut und angewendet. Schließlich werden Kriterien zur Standardisierung und Ableitung eines Einzahlenkennwertes evaluiert. Sinnvolle Erweiterungen werden aufgezeigt. Es wird ein eigenes Materialmodell auf der Grundlage eines Porenbündelansatzes hergeleitet, welches mit einem mechanistischen Ansatz gekoppelt wird, der den Feuchtetransport in seriell und parallel strukturierte Bereiche untergliedert. Die abgeleitete Flüssigwasserleitfähigkeit wird anhand von Leitfähigkeitsmessdaten im nahe gesättigten sowie im hygroskopischen Feuchtebereich justiert. Zwei interne Modellparameter werden anschließend unter Berücksichtigung der Hysterese der Feuchtespeicherung anhand des Aufsaug- und des Trocknungsversuches kalibriert. Das Materialmodell ist zur Erleichterung der Anwendung in ein Computerprogramm zur Anpassung an die Labordaten implementiert worden. Das Programm wird auf die vier Baustoffe Ziegel, Kalksandstein, Porenbeton und Calciumsilikat angewendet. Die entsprechend angepassten Materialfunktionen werden gezeigt und diskutiert. Im Rahmen der Kalibrierung wird eine hervorragende Übereinstimmung zwischen gemessenem und berechnetem Materialverhalten erreicht. Zur Modellvalidierung wird die Augenblicksprofilmethode (IPM) für die bauphysikalische Anwendung erweitert. Spezielle Apparaturen werden entwickelt und Versuchsabläufe entworfen. Modelle zur Ableitung des Wassergehaltes aus mit Hilfe der Time Domain Reflectometry (TDR) gewonnenen Dielektrizitätsmessdaten werden evaluiert und implementiert. Schließlich wird ein umfangreiches Programm an Feuchteprofilmessungen im hygroskopischen und überhygroskopischen Feuchtebereich umgesetzt und ausgewertet. Im Rahmen der Validierung werden die Entwicklungen auf experimenteller sowie auf Modellierungsebene zusammengeführt. Die IPM Experimente werden anhand der gemessenen Anfangs- und Randbedingungen und auf der Grundlage der angepassten und kalibrierten Materialfunktionen nachgerechnet. Der Vergleich zwischen Messung und Rechnung offenbart die Stärke der entwickelten Materialmodellierung ebenso, wie den Einfluss der auf Ebene der Transporttheorie getroffenen Vereinfachungen. Ein deutlicher Einfluss der sich aus der Prozessgeschichte sowie der Prozessdynamik zusammensetzenden Hysterese der Feuchtespeicherung kann nachgewiesen werden. Mit der vorliegenden Arbeit ist somit nicht nur die Materialmodellierung entscheidend weiterentwickelt, die Reihe der einfachen Basisexperimente um einen wesentlichen Versuch erweitert und die Augenblicksprofilmethode für bauphysikalische Belange anwendbar gemacht worden, es wurden auch die Einflüsse der Prozessgeschichte, und erstmals auch der Prozessdynamik, auf den Feuchtetransport sowie die sich einstellenden Feuchteprofile deutlich aufgezeigt und nachgewiesen. Es ist demnach nicht nur ein Materialmodell, welches den gestellten Anforderungen an Flexibilität, breite Anwendbarkeit und Erweiterbarkeit genügt, entwickelt worden, es wird mit den gewonnenen Messdaten auch die Grundlage weiterer Forschung zur Verfügung gestellt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-ds-1207758173790-40696 |
Date | 09 April 2008 |
Creators | Scheffler, Gregor |
Contributors | Technische Universität Dresden, Bauingenieurwesen, Prof. Dr.-Ing. habil. Peter Häupl, Prof. Dr. habil. Henryk Sobczuk, Prof. Dr. Carsten Rode, Prof. Dr.-Ing. habil. Peter Häupl |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0033 seconds