Control of solid state ordering in conjugated small molecules is paramount to the continued development and implementation of organic materials in electronic devices. However, there exists no reliable method on which to predicatively determine how a change to the molecular structure will impact the solid-state packing. As such, the molecule must be synthesized before its solid-state packing can be definitively evaluated. However, once the packing structure of a material is known there exist both qualitative structure- function relationships derived from the literature, as well as quantitative computational methods that can be employed to suggest if a material will perform well in a given device. This type of bottom-up strategy is used in Chapter 2 to design and synthesize a high performance material for organic field effect transistors. A core molecule is synthesized, and through rigorous optimization of pendant and solubilizing groups a material with exceptional solid-state packing is developed and its performance in an organic field effect transistor is discussed.
Chapter 3 discusses the use of conjugated organic molecules in conjunction with inorganic materials to develop hybrid organic/inorganic materials. A scalable synthesis is developed so derivatives can be rapidly synthesized and their properties evaluated. Two classes of materials are developed and synthesized: tetracene-based ligands for quantum dots and diammonium-substituted anthracene and tetracene derivatives for 2D-perovskites. Initial results for both classes of materials are presented. Chapter 4 discusses the topochemical photopolymerization of heptacene [4+4] dimers. Multiple derivatives were synthesized in order to give the ideal alignment of molecules in the crystal, followed by irradiation of crystals to give crystal templated polymerization. In Chapter 5, triarylmethane derivatives are synthesized and their performance as radiochromic sensors is evaluated. Chapter 6 involves the development of a robust synthetic scheme toward a difficult to attain π- extended regioisomer of pyrene. Photophysical characterization reveals that the direction of π-extension from the pyrene core has a profound effect on electron delocalization.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:chemistry_etds-1115 |
Date | 01 January 2018 |
Creators | Petty, Anthony Joseph, II |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Chemistry |
Page generated in 0.0021 seconds