In recent years, nanostructured materials incorporated with inorganic particles and polymers have attracted attention for simultaneous multifunctional biomedical applications. This thesis summarized three works, which are preparation of mesoporous silica coated superparamagnetic iron oxide (Fe3O4@mSiO2) nanoparticles (NPs) as magnetic resonance imaging T2 contrast agents, polymer grafted Fe3O4@mSiO2 NPs response to temperature change, synthesis and biocompatibility evaluation of high aspect ratio (AR) gold nanorods. Monodisperse Fe3O4@mSiO2 NPs have been prepared through a sol-gel process. The coating thickness and particle sizes can be precisely controlled by varying the synthesis parameters. Impact of surface coatings on magnetometric and relaxometric properties of Fe3O4 NPs is studied. The efficiency of these contrast agents, evaluated by MR relaxivities ratio (r2/r1), is much higher than that of the commercial ones. This coating-thickness dependent relaxation behavior is explained due to the effects of mSiO2 coatings on water exclusion. Multifunctional core-shell composite NPs have been developed by growing thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm)) on Fe3O4@mSiO2 NPs through free radical polymerization. Their phase transition behavior is studied, and their lower critical solution temperature (LCST) can be subtly tuned from ca. 34 to ca. 42 °C, suitable for further in vivo applications. A seedless surfactant-mediated protocol has been applied for synthesis of high AR gold nanorods with the additive of HNO3. A growth mechanism based on the effect of nitrate ions on surfactant micelle elongation and Ostwald ripening process is proposed. The biocompatibility of high AR nanorods was evaluated on primary human monocyte derived dendritic cells (MDDCs). Their minor effects on viability and immune regulatory markers support further development for medical applications. / QC 20110701
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-35518 |
Date | January 2011 |
Creators | Ye, Fei |
Publisher | KTH, Funktionella material, FNM, Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-ICT/MAP AVH, 1653-7610 ; 2011:4 |
Page generated in 0.0027 seconds