Return to search

Thin Film and Plasma Characterization of PVD Oxides

The state-of-the-art tools for machining metals are primarily based on a metal-ceramic composite(WC-Co) coated with different combinations of carbide, nitride and oxide coatings. Combinations of these coating materials are optimized to withstand specific wear conditions. Oxide coatings are especially desired because of their possible high hot hardness, chemical inertness with respect to the workpiece, and their low friction. This thesis deals with process and coating characterization of new oxide coatings deposited by physical vapor deposition (PVD) techniques, focusing on the Cr-Zr-O and Al-Cr-Si-O systems. The thermal stability of α-Cr0.28Zr0.10O0.61 deposited by reactive radio frequency (RF)-magnetron sputtering at 500 °C was investigated after annealing up to 870 °C. The annealed samples showed transformation of α-(Cr,Zr)2O3 and amorphous ZrOx-rich areas into tetragonal ZrO2 and bcc Cr. The instability of the α-(Cr,Zr)2O3 is surprising and possibly related to the annealing being done under vacuum, facilitating the loss of oxygen. The stabilization of the room temperature metastable tetragonal ZrO2 phase, due to surface energy effects, may prove to be useful for metal cutting applications. The observed phase segregation of α-(Cr,Zr)2O3 and formation of tetragonal ZrO2 with corresponding increase in hardness for this pseudo-binary oxide system also opens up design routes for pseudo-binary oxides with tunable microstructural and mechanical properties. The inherent difficulties of depositing insulating oxide films with PVD, demanding a closed circuit, makes the investigation of process stability an important part of this research. In this context, we investigated the influence of adding small amount of Si in Al-Cr cathode on plasma characteristics ,process parameters, and coating properties. Si was chosen here due to a previous study showing improved erosion behavior of Al-Cr-Si over pure Al-Cr cathode without Si incorporation in the coating. This work shows small improvements in cathode erosion and process stability (lower pressure and cathode voltage) when introducing 5 at % Si in the Al70Cr30-cathode. This also led to fewer droplets at low cathode current and intermediate O2 flow. A larger positive effect on cathode erosion was observed with respect to cleaning the cathode from oxide contamination by increasing cathode current with 50%. However, higher cathode current also resulted in increased amount of droplets in the coating which is undesirable. Through plasma analysis the presence of volatile SiO species could be confirmed but the loss of Si through volatile SiO species was negligible, since the coating composition matched the cathode composition. The positive effect of added Si on the process stability at the cathode surface should be weighed against Si incorporation in the coating. This incorporation may or may not be beneficial for the final application since literature states that Si promotes the metastable γ-phase over the thermodynamically stable α-phase of pure Al2O3, contrary to the effect of Cr, which stabilizes the α-phase.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-134146
Date January 2017
CreatorsLandälv, Ludvig
PublisherLinköpings universitet, Tunnfilmsfysik, Linköpings universitet, Tekniska fakulteten, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1769

Page generated in 0.0027 seconds