Nanoparticles are involved in a broad range of applications, including heterogeneous catalysis. Nanoparticles tend to quickly lose their well-defined shapes and facets due to aggregation under duress such as heat.
A series of highly studied materials are explored as support materials for nanoparticle supports. These supports include metal-organic frameworks (MOF), graphene oxide (GO), and a MOF-PRGO (partially reduced graphene oxide) hybrid. The inclusion of a support with the palladium increased lifespan of the catalyst by separation of nanoparticles. The choice of support material not only allowed for supporting of palladium nanoparticles, but allowed for rational catalyst synthesis in order to design catalysts with improved catalytic activity.
CO oxidation, vanillin hydrogenation, and Suzuki cross coupling were studied. For the CO oxidation reaction, a cerium-based MOF, Ce-MOF, is shown to increase activity of palladium nanoparticles by capturing reactant gases and acting as an oxygen reservoir that cycles between (III) and (IV) states while transferring oxygen to palladium nanoparticles at the Pd/Ce-MOF interface. A hybrid Ce-MOF-PRGO was synthesized to increase the surface area and acidity of Ce-MOF materials and was shown to be active for vanillin hydrogenation. Smaller rod-like Ce-MOF crystals were observed, indicating intercalation of crystals on GO. Zirconium-based MOF UiO-66-NH2 was acidified via incorporation of tungstophosphoric acid (HPW), which increased the selectivity of products by adjusting the mechanistic pathway. GO was partially functionalized with aromatic amines to improve the coupling of bromobenzene and phenylboronic acid. Small amounts of aromatic amines increased the Pd(0) content and decreased nanoparticle size.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-6667 |
Date | 01 January 2018 |
Creators | Lin, Andrew |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0018 seconds