Hydrogen transport membranes have gained interest from industry as an alternative to pressure swing adsorption or cryogenic distillation, and are aimed to reduce cost, equipment size, energy consumption and waste generation. Doped strontium cerate stabilized with zirconium exhibit high proton conductivity and chemical stability and is therefore considered to be a promising material for hydrogen transport membranes.The purpose of the work was to investigate if phase pure strontium cerates, stabilized with zirconium and doped with thulium, ytterbium or yttrium, could be synthesized by the Pechini method, and if the membranes exhibited sufficient density. Determination of optimal calcination and sintering parameters was also important parts in the study.SrCe0.75Zr0.20M0.05O3-d, (M=Tm,Y,Yb) were synthesized via the Pechini method, followed by calcination, pressing of green bodies and sintering of dense membranes. Phase purity of powders and sintered membranes was examined by X-ray diffraction. Surface investigation and microstructure was investigated in a scanning electron microscope. Sintering behavior and thermal expansion coefficients was determined by dilatometry. Phase pure and dense orthorhombic perovskite structured SrCe0.75Zr0.20M0.05O3-d;, (M=Tm,Y,Yb) membranes, were obtained by powder calcination at 1000 C, followed by milling and conventional sintering at 1500-1600 C. SrCe0.75Zr0.20Tm0.05O3-d demonstrated the highest density of 98,6%, when sintered at 1500 C. Sintered membranes had a average grain size in the range from 3,2 – 4,9 um. Ball milling is concluded to be of vital importance to obtain sufficient density in the membranes.The membrane characterization is limited to the methods and techniques described above. Hydrogen flux across the membrane, total conductivity, stability in reducing atmosphere and thorough investigation of thermal properties are recommended for further work.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-19418 |
Date | January 2012 |
Creators | Roaas, Lasse Valland |
Publisher | Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, Institutt for materialteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds