Master of Science / In vivo many forms of glia utilise both intercellular and extracellular pathways in the form of IP3 permeable gap junctions and cytoplasmic ATP diffusion to produce calcium waves. We introduce a model of ATP and Ca2+ waves in clusters of glial cells in which both pathways are included. Through demonstrations of its capacity to replicate the results of existing theoretical models of individual pathways and to simulate experimental observations of retinal glia the validity of the model is confirmed. Characteristics of the waves resulting from the inclusion of both pathways are identified and described.
Identifer | oai:union.ndltd.org:ADTP/216231 |
Date | January 2007 |
Creators | Edwards, James Roy |
Publisher | University of Sydney., School of Mathematics and Statistics |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | The author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html |
Page generated in 0.0013 seconds