A mulitscale approach is used to model the coalescence of voids. At the microscale, cylindrical and spherical voids in nickel and the magnesium alloy AM60 are simulated through finite element analyses. The nickel cylindrical void simulations are compared to a set of experiments to validate this micromechanical finite element approach used to study void coalescence. At the macroscale, the coalescence portion of a microstructure-property material model is modified to reflect the behavior of three-dimensional spherical voids using results from the micromechanical simulations. An analysis of an automotive component illustrates the influence of void coalescence at the structural scale.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4237 |
Date | 11 December 2004 |
Creators | Jones, Matthew Kenneth |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds