Return to search

Bayesian Model Selection For Classification With Possibly Large Number Of Groups

The purpose of the present dissertation is to study model selection techniques which are specifically designed for classification of high-dimensional data with a large number of classes. To the best of our knowledge, this problem has never been studied in depth previously. We assume that the number of components p is much larger than the number of samples n, and that only few of those p components are useful for subsequent classification. In what follows, we introduce two Bayesian models which use two different approaches to the problem: one which discards components which have “almost constant” values (Model 1) and another which retains the components for which between-group variations are larger than withingroup variation (Model 2). We show that particular cases of the above two models recover familiar variance or ANOVA-based component selection. When one has only two classes and features are a priori independent, Model 2 reduces to the Feature Annealed Independence Rule (FAIR) introduced by Fan and Fan (2008) and can be viewed as a natural generalization to the case of L > 2 classes. A nontrivial result of the dissertation is that the precision of feature selection using Model 2 improves when the number of classes grows. Subsequently, we examine the rate of misclassification with and without feature selection on the basis of Model 2.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2836
Date01 January 2011
CreatorsDavis, Justin Kyle
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0015 seconds