Return to search

Oscillation of quenched slowdown asymptotics of random walks in random environment in Z

<p> We consider a one dimensional random walk in a random environment (RWRE) with a positive speed lim<i><sub>n</sub></i><sub>&rarr;&infin;</sub> (<i>X<sub>n</sub>/</i>) = &upsi;<sub>&alpha;</sub> > 0. Gantert and Zeitouni showed that if the environment has both positive and negative local drifts then the quenched slowdown probabilities <i>P</i><sub> &omega;</sub>(<i>X<sub>n</sub></i> &lt; <i>xn</i>) with <i> x</i>&isin; (0,&upsi;<sub>&alpha;</sub>) decay approximately like exp{-<i> n</i><sup>1-1/</sup><i><sup>s</sup></i>} for a deterministic <i> s</i> > 1. More precisely, they showed that <i>n</i><sup> -&gamma;</sup> log <i>P</i><sub>&omega;</sub>(<i>X<sub>n </sub></i> &lt; <i>xn</i>) converges to 0 or -&infin; depending on whether &gamma; > 1 - 1/<i>s</i> or &gamma; &lt; 1 - 1/<i> s</i>. In this paper, we improve on this by showing that <i>n</i><sup> -1+1/</sup><i><sup>s</sup></i> log <i>P</i><sub> &omega;</sub>(X<sub>n</sub> &lt; <i>xn</i>) oscillates between 0 and -&infin; , almost surely.</p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10170588
Date28 October 2016
CreatorsAhn, Sung Won
PublisherPurdue University
Source SetsProQuest.com
LanguageEnglish
Detected LanguageUnknown
Typethesis

Page generated in 0.0018 seconds