Return to search

Online decision problems with large strategy sets

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005. / Includes bibliographical references (p. 165-171). / In an online decision problem, an algorithm performs a sequence of trials, each of which involves selecting one element from a fixed set of alternatives (the "strategy set") whose costs vary over time. After T trials, the combined cost of the algorithm's choices is compared with that of the single strategy whose combined cost is minimum. Their difference is called regret, and one seeks algorithms which are efficient in that their regret is sublinear in T and polynomial in the problem size. We study an important class of online decision problems called generalized multi- armed bandit problems. In the past such problems have found applications in areas as diverse as statistics, computer science, economic theory, and medical decision-making. Most existing algorithms were efficient only in the case of a small (i.e. polynomial- sized) strategy set. We extend the theory by supplying non-trivial algorithms and lower bounds for cases in which the strategy set is much larger (exponential or infinite) and the cost function class is structured, e.g. by constraining the cost functions to be linear or convex. As applications, we consider adaptive routing in networks, adaptive pricing in electronic markets, and collaborative decision-making by untrusting peers in a dynamic environment. / by Robert David Kleinberg. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/33092
Date January 2005
CreatorsKleinberg, Robert David
ContributorsF. Thomson Leighton., Massachusetts Institute of Technology. Dept. of Mathematics., Massachusetts Institute of Technology. Dept. of Mathematics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format171 p., 10061360 bytes, 10071115 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0015 seconds