Return to search

On-line quality control in polymer processing using hyperspectral imaging

L’industrie du plastique se tourne de plus en plus vers les matériaux composites afin d’économiser de la matière et/ou d’utiliser des matières premières à moindres coûts, tout en conservant de bonnes propriétés. L’impressionnante adaptabilité des matériaux composites provient du fait que le manufacturier peut modifier le choix des matériaux utilisés, la proportion selon laquelle ils sont mélangés, ainsi que la méthode de mise en œuvre utilisée. La principale difficulté associée au développement de ces matériaux est l’hétérogénéité de composition ou de structure, qui entraîne généralement des défaillances mécaniques. La qualité des prototypes est normalement mesurée en laboratoire, à partir de tests destructifs et de méthodes nécessitant la préparation des échantillons. La mesure en-ligne de la qualité permettrait une rétroaction quasi-immédiate sur les conditions d’opération des équipements, en plus d’être directement utilisable pour le contrôle de la qualité dans une situation de production industrielle. L’objectif de la recherche proposée consiste à développer un outil de contrôle de qualité pour la qualité des matériaux plastiques de tout genre. Quelques sondes de type proche infrarouge ou ultrasons existent présentement pour la mesure de la composition en-ligne, mais celles-ci ne fournissent qu’une valeur ponctuelle à chaque acquisition. Ce type de méthode est donc mal adapté pour identifier la distribution des caractéristiques de surface de la pièce (i.e. homogénéité, orientation, dispersion). Afin d’atteindre cet objectif, un système d’imagerie hyperspectrale est proposé. À l’aide de cet appareil, il est possible de balayer la surface de la pièce et d’obtenir une image hyperspectrale, c’est-à-dire une image formée de l’intensité lumineuse à des centaines de longueurs d’onde et ce, pour chaque pixel de l’image. L’application de méthodes chimiométriques permettent ensuite d’extraire les caractéristiques spatiales et spectrales de l’échantillon présentes dans ces images. Finalement, les méthodes de régression multivariée permettent d’établir un modèle liant les caractéristiques identifiées aux propriétés de la pièce. La construction d’un modèle mathématique forme donc l’outil d’analyse en-ligne de la qualité des pièces qui peut également prédire et optimiser les conditions de fabrication. / The use of plastic composite materials has been increasing in recent years in order to reduce the amount of material used and/or use more economic materials, all of which without compromising the properties. The impressive adaptability of these composite materials comes from the fact that the manufacturer can choose the raw materials, the proportion in which they are blended as well as the processing conditions. However, these materials tend to suffer from heterogeneous compositions and structures, which lead to mechanical weaknesses. Product quality is generally measured in the laboratory, using destructive tests often requiring extensive sample preparation. On-line quality control would allow near-immediate feedback on the operating conditions and may be transferrable to an industrial production context. The proposed research consists of developing an on-line quality control tool adaptable to plastic materials of all types. A number of infrared and ultrasound probes presently exist for on-line composition estimation, but only provide single-point values at each acquisition. These methods are therefore less adapted for identifying the spatial distribution of a sample’s surface characteristics (e.g. homogeneity, orientation, dispersion). In order to achieve this objective, a hyperspectral imaging system is proposed. Using this tool, it is possible to scan the surface of a sample and obtain a hyperspectral image, that is to say an image in which each pixel captures the light intensity at hundreds of wavelengths. Chemometrics methods can then be applied to this image in order to extract the relevant spatial and spectral features. Finally, multivariate regression methods are used to build a model between these features and the properties of the sample. This mathematical model forms the backbone of an on-line quality assessment tool used to predict and optimize the operating conditions under which the samples are processed.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/21300
Date16 April 2018
CreatorsGosselin, Ryan
ContributorsRodrigue, Denis, Duchesne, Carl
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format223 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds