Return to search

Décompositions conjointes de matrices complexes : application à la séparation de sources

Cette thèse traite de l'étude de méthodes de diagonalisation conjointe de matrices complexes, en vue de la séparation de sources, que ce soit dans le domaine des télécommunications numériques ou de la radioastronomie. Après avoir présenté les motivations qui ont poussé cette étude, nous faisons un bref état de l'art dans le domaine. Le problème de la diagonalisation conjointe, ainsi que celui de la séparation de source sont rappelés, et un lien entre ces deux sujets est établi. Par la suite, plusieurs algorithmes itératifs sont développés. Dans un premier temps, des méthodes utilisant une mise à jour de la matrice de séparation, de type gradient, sont présentées. Elles sont basées sur des approximations judicieuses du critère considéré. Afin d'améliorer la vitesse de convergence, une méthode utilisant un calcul du pas optimal est présentée, et plusieurs variantes de ce calcul, basées sur les approximations faites précédemment, sont développées. Deux autres approches sont ensuite introduites. La première détermine la matrice de séparation de manière analytique, en calculant algébriquement les termes composant la matrice de mise à jour par paire à partir d'un système d'équations linéaire. La deuxième estime récursivement la matrice de mélange, en se basant sur une méthode de moindres carrés alternés. Afin d'améliorer la vitesse de convergence, une recherche de pas d'adaptation linéaire est proposée. Ces méthodes sont alors validées sur un problème de diagonalisation conjointe classique. Puis les algorithmes sont appliqués à la séparation de sources de signaux de télécommunication numérique, en utilisant des statistiques d'ordre deux ou supérieur. Des comparaisons sont également effectuées avec des méthodes standards. La deuxième application concerne l'élimination des interférences terrestres à partir de l'estimation de l'espace associé, afin d'observer au mieux des sources cosmiques, issues de données de station LOFAR.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00798019
Date02 October 2012
CreatorsTrainini, Tual
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0153 seconds