The primary intent of this thesis is to uncover the presence of matrices in polynomials and also to demonstrate that wherever there are vast numbers of interlocking relationships that must be handled, it is reasonable to guess that matrices will appear on the scene and lend their strength to facilitate the process. Most important of all, I seriously expose this omnipresent ability of matrices in polynomials and matrix equations. Matrix polynomials and equations are, in the main, a part of algebra, but it has become increasingly clear that they possess a utility that extends beyond the domain of algebra into other regions of mathematics. More than this, we have discovered that they are exactly the means necessary for expressing many ideas of applied mathematics. My thesis illustrates this for polynomials and equations of matrices.
Identifer | oai:union.ndltd.org:auctr.edu/oai:digitalcommons.auctr.edu:dissertations-4744 |
Date | 01 August 1980 |
Creators | Olawuyi, Paul O. |
Publisher | DigitalCommons@Robert W. Woodruff Library, Atlanta University Center |
Source Sets | Atlanta University Center |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | ETD Collection for AUC Robert W. Woodruff Library |
Page generated in 0.0017 seconds