Return to search

La RNase P mitochondriale chez Neurospora crassa

Résumé
La Ribonucléase P (RNase P) est une enzyme principalement reconnue pour sa participation à la maturation en 5’des ARN de transfert (ARNt). Cependant, d’autres substrats sont reconnus par l’enzyme. En général, la RNase P est composée d’une sous-unité ARN (le P-ARN, codé par le gène rnpB) qui porte le centre actif de l’enzyme et d’une ou de plusieurs sous-unités protéiques (la P-protéine).
Les P-ARN chez toutes les bactéries, la majorité des archéobactéries et dans le génome nucléaire de la plupart des eucaryotes, possèdent généralement une structure secondaire très conservée qui inclut le noyau (P1-P4); l’hélice P4 constitue le site catalytique de l’enzyme et l’hélice P1 apparie les extrémités du P-ARN en stabilisant sa structure globale. Les P-ARN mitochondriaux sont souvent moins conservés et difficiles à découvrir. Dans certains cas, les seules régions de structure primaire qui restent conservées sont celles qui définissent le P4 et le P1.
Pour la détection des gènes rnpB, un outil de recherche bioinformatique, basé sur la séquence et le profil de structure secondaire, a été développé dans le laboratoire. Cet outil permet le dépistage de toutes les séquences eucaryotes (nucléaires et mitochondriales) du gène avec une très grande confiance (basée sur une valeur statistique, E-value). Chez les champignons, plusieurs ascomycètes encodent un gène rnpB dans leur génome mitochondrial y compris tous les membres du genre d’Aspergillus. Cependant, chez les espèces voisines, Neurospora crassa, Podospora anserina et Sordaria macrospora, une version mitochondriale de ce gène n’existe pas. Au lieu de cela, elles contiennent deux copies nucléaires du gène, légèrement différentes en taille et en contenu nucléotidique.
Mon projet a été établi dans le but d’éclaircir l’évolution de la RNase P mitochondriale (mtRNase P) chez ces trois espèces voisines d’Aspergillus.
En ce qui concerne les résultats, des modèles de structures secondaires pour les transcrits de ces gènes ont été construits en se basant sur la structure consensus universelle de la sous-unité ARN de la RNase P. Pour les trois espèces, par la comparaison de ces modèles, nous avons établi que les deux copies nucléaires du gène rnpB sont assez distinctes en séquence et en structure pour pouvoir y penser à une spécialisation de fonction de la RNase P. Chez N. crassa, les deux P-ARN sont modifiés probablement par une coiffe et les extrémités 5’, 3’ sont conformes à nos modèles, ayant un P1 allongé. Encore chez N. crassa, nous avons constaté que les deux copies sont transcrites au même niveau dans le cytoplasme et que la plus petite et la plus stable d’entre elles (Nc1) se retrouve dans l’extrait matriciel mitochondrial. Lors du suivi du P-ARN dans diverses sous-fractions provenant de la matrice mitochondriale soluble, Nc1 est associée avec l’activité de la RNase P. La caractérisation du complexe protéique, isolé à partir de la fraction active sur un gel non dénaturant, révèle qu’il contient au moins 87 protéines, 73 d’entre elles ayant déjà une localisation mitochondriale connue. Comme chez la levure, les protéines de ce complexe sont impliquées dans plusieurs fonctions cellulaires comme le processing de l’ADN/ARN, le métabolisme, dans la traduction et d’autres (par exemple : la protéolyse et le repliement des protéines, ainsi que la maintenance du génome mitochondrial). Pour trois protéines, leur fonction est non déterminée. / Abstract
Ribonuclease P (RNase P) is an endonuclease that cleaves 5’- leader sequences from tRNA precursors and a few other small RNAs. In most cases, the enzyme is a ribonucleo-protein complex (ribozyme), containing an RNA subunit (P-RNA; encoded by the rnpB gene) that carries the active centre of the enzyme, plus one or more protein subunits.
P-RNAs in Bacteria, Eukarya and Archaea have a highly conserved secondary structure including the core P1 and P4 helices. P4 forms the catalytic site of the ribozyme, and P1 pairs the RNA termini, stabilizing overall structure and protecting from nuclease degradation. For processing of mitochondrial (mt) tRNAs, certain eukaryotic species (e.g., Saccharomyces cerevisiae, Aspergillus nidulans) have separate mtDNA-encoded P-RNAs (of bacterial origin). Mt P-RNAs are often less conserved, and difficult to discover.
To identify rnpB genes, we have developed a search tool based on sequence plus secondary structure profiles. It predicts all known eukaryotic (nuclear and organellar) rnpB genes with high confidence (based on E-values). In fungi, many ascomycetes encode a mitochondrial rnpB gene, including all members of Aspergillus. Yet, the closely related Neurospora crassa, Podospora anserina and Sordaria macrospora lack an mtDNA-encoded gene version. Instead, they contain two nuclear gene copies with slightly different sequences.
My project aims to elucidate the evolution of mitochondrial RNase P in these three closely related species.
We have established secondary structure models based on comparisons with the universal minimum consensus secondary structure for all nuclear gene mtP-RNAs copies in all three species. By comparison of these secondary structure models, we have established that the two nuclear copies of rnpB gene are quite distinct in sequence and structure, suggesting a specialization of function. In N. crassa, both P-RNAs are modified most likely by capping, and 5’- 3’ termini perfectly conform to P-RNA structure models that have an elongated P1 helical pairing. Furthermore, we find that the two nuclear copies of rnpB gene are present at about the same level in the cytoplasm, and that the shorter form of P-RNA (Nc1) translocates into the (soluble) mitochondrial matrix. When tracing P-RNA in different mitochondrial sub-fractions of a native gel, the presence of Nc1 and mitochondrial RNase P activity are associated. A proteomics characterization of a P-RNA complex isolated by native gel electrophoresis reveals that it contains at least 87 proteins, 73 of which are of known mitochondrial localization. Like in yeast, the complex contains proteins potentially involved in other DNA/RNA processing activities, but also in translation, in metabolism, and in protein folding. Only three proteins are of unknown function.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/10267
Date12 1900
CreatorsMinoiu, Ioana
ContributorsLang, Franz B.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0031 seconds