Return to search

Azumaya-Algebren und Oktavenalgebren auf algebraischen Varietäten / Azumaya algebras and octonion algebras on algebraic varieties

Wir behandeln nichtkommutative Algebren über Ringen und auf algebraischen
Varietäten. Im ersten Teil beschreiben wir ein Kriterium, das angibt, ob und wie weit sich eine gegebene Azumaya-Algebra über dem Funktionenkörper einer algebraischen Varietät als Garbe von Azumaya-Algebren auf die Varietät ausdehnen lässt. Außerdem untersuchen wir die lokale Struktur von Azumaya-Algebren oder allgemeiner von Maximalordnungen, die mit Hilfe des Cyclic-Covering-Tricks von Chan konstruiert werden. Mit dieser Methode lassen sich Maximalordnungen auf algebraischen Flächen konstruieren, die zudem genau über einer gewählten Kurve verzweigen.
Im zweiten Teil betrachten wir die nichtassoziativen Oktavenalgebren und allgemeiner auch Kompositionsalgebren über Ringen. Dabei übertragen wir die bekannten Aussagen von Kompositionsalgebren über Körpern auf die Situation von Algebren über Ringen. Wir untersuchen Oktavenalgebren und Maximalordnungen über diskreten Bewertungsringen und verallgemeinern ein Resultat von van der Blij und Springer über die lokale Natur von Maximalordnungen über den rationalen Zahlen und über algebraischen Zahlkörpern auf den Fall von beliebigen noetherschen, ganzabgeschlossenen Integritätsbereichen. Abschließend führen wir eine Definition von Garben von Oktavenalgebren und Garben von Maximalordnungen in Oktavenalgebren über algebraischen Varietäten ein.

Identiferoai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-0001-BC92-4
Date23 October 2013
CreatorsStroth, Kristin
ContributorsStuhler, Ulrich Prof. Dr.
Source SetsGeorg-August-Universität Göttingen
Languagedeu
Detected LanguageGerman
TypedoctoralThesis

Page generated in 0.0021 seconds