Wir behandeln nichtkommutative Algebren über Ringen und auf algebraischen
Varietäten. Im ersten Teil beschreiben wir ein Kriterium, das angibt, ob und wie weit sich eine gegebene Azumaya-Algebra über dem Funktionenkörper einer algebraischen Varietät als Garbe von Azumaya-Algebren auf die Varietät ausdehnen lässt. Außerdem untersuchen wir die lokale Struktur von Azumaya-Algebren oder allgemeiner von Maximalordnungen, die mit Hilfe des Cyclic-Covering-Tricks von Chan konstruiert werden. Mit dieser Methode lassen sich Maximalordnungen auf algebraischen Flächen konstruieren, die zudem genau über einer gewählten Kurve verzweigen.
Im zweiten Teil betrachten wir die nichtassoziativen Oktavenalgebren und allgemeiner auch Kompositionsalgebren über Ringen. Dabei übertragen wir die bekannten Aussagen von Kompositionsalgebren über Körpern auf die Situation von Algebren über Ringen. Wir untersuchen Oktavenalgebren und Maximalordnungen über diskreten Bewertungsringen und verallgemeinern ein Resultat von van der Blij und Springer über die lokale Natur von Maximalordnungen über den rationalen Zahlen und über algebraischen Zahlkörpern auf den Fall von beliebigen noetherschen, ganzabgeschlossenen Integritätsbereichen. Abschließend führen wir eine Definition von Garben von Oktavenalgebren und Garben von Maximalordnungen in Oktavenalgebren über algebraischen Varietäten ein.
Identifer | oai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-0001-BC92-4 |
Date | 23 October 2013 |
Creators | Stroth, Kristin |
Contributors | Stuhler, Ulrich Prof. Dr. |
Source Sets | Georg-August-Universität Göttingen |
Language | deu |
Detected Language | German |
Type | doctoralThesis |
Page generated in 0.0021 seconds