Return to search

Novel Mathematical Aspects of Phylogenetic Estimation

In evolutionary biology, genetic sequences carry with them a trace of the underlying tree that describes their evolution from a common ancestral sequence. Inferring this underlying tree is challenging. We investigate some curious cases in which different
methods like Maximum Parsimony, Maximum Likelihood and distance-based methods
lead to different trees. Moreover, we state that in some cases, ancestral sequences can be more reliably reconstructed when some of the leaves of the tree are ignored - even if these leaves are close to the root. While all these findings show problems inherent to either the assumed model or the applied method, sometimes an inaccurate
tree reconstruction is simply due to insufficient data. This is particularly problematic when a rapid divergence event occurred in the distant past. We analyze an idealized form of this problem and determine a tight lower bound on the growth rate for the
sequence length required to resolve the tree (independent of any particular branch length). Finally, we investigate the problem of intermediates in the fossil record. The extent of ‘gaps’ (missing transitional stages) has been used to argue against gradual evolution from a common ancestor. We take an analytical approach and demonstrate
why, under certain sampling conditions, we may not expect intermediates to be found.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/2331
Date January 2009
CreatorsFischer, Mareike
PublisherUniversity of Canterbury. Mathematics and Statistics
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Mareike Fischer, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.002 seconds