Les travaux présentés dans ce mémoire de thèse concernent le développement et la mise en œuvre d'un algorithme de filtrage particulaire pour le recalage de la navigation inertielle par mesures altimétriques. Le filtre développé, le MRPF (Mixture Regularized Particle Filter), s'appuie à la fois sur la modélisation de la densité a posteriori sous forme de mélange fini, sur le filtre particulaire régularisé ainsi que sur l'algorithme mean-shiftclustering. Nous proposons également une extension du MRPF au filtre particulaire Rao-Blackwellisé appelée MRBPF (Mixture Rao-Blackwellized ParticleFilter). L'objectif est de proposer un filtre adapté à la gestion des multimodalités dues aux ambiguïtés de terrain. L'utilisation des modèles de mélange fini permet d'introduire un algorithme d'échantillonnage d'importance afin de générer les particules dans les zones d'intérêt. Un second axe de recherche concerne la mise au point d'outils de contrôle d'intégrité de la solution particulaire. En nous appuyant sur la théorie de la détection de changement, nous proposons un algorithme de détection séquentielle de la divergence du filtre. Les performances du MRPF, MRBPF, et du test d'intégrité sont évaluées sur plusieurs scénarios de recalage altimétrique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01018717 |
Date | 25 March 2014 |
Creators | Murangira, A. |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds