ELEMENTAL AND ISOTOPIC STUDY OF DIFFERENTIATED METEORITES AND IMPLICATIONS FOR THE ORIGIN AND EVOLUTION OF THEIR PARENT BODIES Iron meteorites are differentiated meteorites composed largely of Fe-Ni alloys. The metallic phase of many iron meteorites shows a texture called the Widmanstätten pattern, which develops as a two-phase intergrowth of kamacite (α-bcc, ferrite) and taenite (γ-fcc, austenite), and forms by nucleation and growth of kamacite from taenite during slow cooling of the parent body. Selected iron meteorites - octahedrites of different structural and chemical groups (Canyon Diablo, Toluca, Bohumilitz, Horh Uul, Alt Biela, Nelson County, Gibeon and Joe Wright Mountain) were studied with intention to evaluate the scale and extent of Fe isotopic heterogeneities in iron meteorites and to find the possible link between the isotopic variations and thermal histories of the respective meteorite parent bodies. The Fe isotopic compositions of kamacite and taenite in the studied meteorites, obtained by three independent analytical techniques with different spatial resolution capabilities (laser ablation and solution MC ICP-MS and SIMS) show significant variations of up to ~4.5‰ in δ56 Fe. The taenite is isotopically heavier compared to kamacite in all studied meteorites. There is no correlation...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:311397 |
Date | January 2011 |
Creators | Halodová, Patricie |
Contributors | Košler, Jan, Řanda, Zdeněk, Kanický, Viktor |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds