Cette thèse s'inscrit dans l'étude des sous-variétés minimales et à courbure moyenne constante et de l'influence de la géométrie de la variété ambiante sur les solutions de ce problème.Dans le premier chapitre, en suivant les idées de F. Almgren, on propose une généralisation de la notion d'hypersurface de courbure moyenne constante à toutes codimensions. En dimension n-k on définie les sous-variétés à courbure moyenne constante comme les points critiques de la fonctionnelle de k-volume des bords des variétés minimales de dimension k+1. On prouve l'existence dans une variété riemannienne compacte de dimension n de sous-variétés à courbure moyenne constante de codimension n-k pour tout k < n qui sont des perturbations des sphères géodésiques de petit volume.Dans le deuxième chapitre, on s'intéresse aux surfaces minimales à bords libres dans la boule unité de l'espace euclidien de dimension 3, c'est-à-dire aux surfaces minimales plongées dans la boule unité dont le bord rencontre la sphère unité orthogonalement. On démontre l'existence de deux famille géométriquement distinctes de telles surfaces qui sont indexées par un entier n assez grand, qui représente le nombre de composantes connexes du bord de ces surfaces. Nous donnons en particulier une deuxième preuve d'un résultat de A. Fraser et R. Schoen concernant l'existence de telles surfaces.Un des résultats fondamentaux de la théorie des surfaces à courbure moyenne constante est le théorème de Hopf qui affirme que les seules sphères topologiques à courbure moyenne constante dans l'espace euclidien de dimension 3 sont les sphères rondes. Dans le troisième chapitre, on propose une construction dans une variété riemannienne de dimension 3 d'une famille de sphères topologiques à courbure moyenne constante qui ne sont pas convexes et dont la courbure moyenne est très grande. / The subject of this thesis is the study of minimal and constant mean curvature submanifolds and of the influence of the geometry of the ambient manifold on the solutions of this problem.In the first chapter, following the ideas of F. Almgren, we propose a generalization of the notion of hypersurface with constant mean curvature to all codimensions. In codimension n-k we define constant mean curvature submanifolds as the critical points of the functional of the k - dimensional volume of the boundaries of k+1 - dimensional minimal submanifolds. We prove the existence in compact n-dimensional manifolds of n-k codimensional submanifolds with constant mean curvature for all k<n which are perturbations of geodesic spheres of small volume.In the second chapter, we consider free boundary minimal surfaces in the unit ball of the three dimensional Euclidean space, i.e. minimal surfaces embedded in the unit ball and which meet the unit sphere orthogonally. We prove the existence of two geometrically distinct families of such surfaces parametrized by an integer n large enough, which represents the number of the boundary components. In particular, we give an independent proof of the result of A. Fraser and R. Schoen concerning the existence of such surfaces.One of the fundamental results of the theory of constant mean curvature surfaces is the Hopf's theorem which asserts that the only topological spheres with constant mean curvature in the Euclidean 3-space are round spheres. In the third chapter, we propose a construction in a three dimensional Riemannian manifold of a family of nonconvex topological spheres with large constant mean curvature.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLX003 |
Date | 29 January 2016 |
Creators | Zolotareva, Tatiana |
Contributors | Université Paris-Saclay (ComUE), Pacard, Frank |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds