Portfolio selection theory, developed by Markowitz (1952), is one of the best known and widely applied methods for allocating funds among possible investment choices, where investment decision making is a trade-off between the expected return and risk of the portfolio. Many portfolio selection models have been developed on the basis of Markowitz's theory. Most of them assume that complete investment information is available and that it can be accurately extracted from the historical data. However, this complete information never exists in reality. There are many kinds of ambiguity and vagueness which cannot be dealt with in the historical data but still need to be considered in portfolio selection. For example, to address the issue of uncertainty caused by estimation errors, the robust counterpart approach of Ben-Tal and Nemirovski (1998) has been employed frequently in recent years. Robustification, however, often leads to a more conservative solution. As a consequence, one of the most common critiques against the robust counterpart approach is the excessively pessimistic character of the robust asset allocation. This thesis attempts to develop new approaches to improve on the respective performances of the robust counterpart approach by incorporating additional investment information sources, so that the optimal portfolio can be more reliable and, at the same time, achieve a greater return.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:763424 |
Date | January 2015 |
Creators | Lu, I-Chen (Jennifer) |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/18045 |
Page generated in 0.002 seconds