Return to search

S4FE : sequential feature frequency filter - front-end for SLAM

Fechamento de loops é um dos principais processos das estratégias de SLAM baseadas em grafos, usadas para estimar o erro de deslocamento acumulado à ser minimizado pela técnica. Neste sentido, boas correspondências de cenas permitem criar uma conexão entre dois nós do grafo que está sendo construído para representar o ambiente. Contudo, falsas correspondências podem levar essas estratégias a um estado irreversível de falsa representação do ambiente. Neste trabalho, um método robusto baseado em features que usa sequências de imagens para reconhecer áreas revisitadas é apresentado. Este método usa a abordagem de Bag-of-Words para reduzir efeitos de iluminação e uma ponderação TF-IDF para ressaltar as principais features que descrevem cada cena. Além disso, um algoritmo baseado na técnica de Mean Shift é usado sobre uma matriz de similaridade para identificar a possível trajetória seguida pelo robô e melhorar a detecção de fechamento de loop. O método apresentado foi testado em um ambiente aberto usando sequências de imagens coletadas com usando uma câmera de mão e um drone modelo Parrot ArDrone 2.0. / Loop closure recognition is one of the main processes of graph-based SLAM strategies, used to estimate the accumulated motion error to be minimized by the technique. Good scene correspondences allow to create constraints between two nodes in the graph that is currently being built to represent the environment that the robot is immersed. However, false correspondences can lead these strategies to an irreversible wrong environment representation. In this work, we present a robust feature-based loop closure approach that uses image sequence matching to recognize revisited areas. This approach uses Bag-of- Words to reduce the effects of lightning changes and a TF-IDF weighting to enhance the main features that describe each scene. Besides, an algorithm based on Mean Shift is used over a similarity matrix to identify the possible trajectory followed by the robot and improve the loop closure detection. Our method is tested in a GPS-denied outdoor environment using image sequences collected using a handheld camera and a Parrot ArDrone 2.0.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/134342
Date January 2016
CreatorsFranco, Guilherme Schvarcz
ContributorsSilva Junior, Edson Prestes e
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds