This dissertation presents a comprehensive exploration encompassing the design, development, control and the application of reinforcement learning-based force planning for the autonomous grasping capabilities of the innovative assistive robotic exoskeleton gloves. Exoskeleton devices have emerged as a promising avenue for providing assistance to individuals with hand disabilities, especially those who may not achieve full recovery through surgical interventions. Nevertheless, prevailing exoskeleton glove systems encounter a multitude of challenges spanning design, control, and human-machine interaction. These challenges have given rise to limitations, such as unwieldy bulkiness, an absence of precise force control algorithms, limited portability, and an imbalance between lightweight construction and the essential functionalities required for everyday activities.
To address these challenges, this research undertakes a comprehensive exploration of various dimensions within the exoskeleton glove system domain. This includes the intricate design of the finger linkage mechanism, meticulous kinematic analysis, strategic kinematic synthesis, nuanced dynamic modeling, thorough simulation, and adaptive control. The development of two distinct types of series elastic actuators, coupled with the creation of two diverse exoskeleton glove designs based on differing mechanisms, constitutes a pivotal aspect of this study.
For the exoskeleton glove integrated with series elastic actuators, a sophisticated dynamic model is meticulously crafted. This endeavor involves the formulation of a mathematical framework to address backlash and the subsequent mitigation of friction forces. The pursuit of accurate force control culminates in the proposition of a data-driven model-free force predictive control policy, compared with a dynamic model-based force control methodology. Notably, the efficacy of the system is validated through meticulous clinical experiments.
Meanwhile, the low-profile exoskeleton glove design with a novel mechanism engages in a further reduction of size and weight. This is achieved through the integration of a rigid coupling hybrid mechanism, yielding pronounced advancements in wearability and comfortability. A deep reinforcement learning approach is adopted for the real-time force planning control policies. A simulation environment is built to train the reinforcement learning agent.
In summary, this research endeavors to surmount the constraints imposed by existing exoskeleton glove systems. By virtue of advancing mechanism design, innovating control strategies, enriching perception capabilities, and enhancing wearability, the ultimate goal is to augment the functionality and efficacy of these devices within the realm of assistive applications. / Doctor of Philosophy / This dissertation presents a comprehensive exploration encompassing the design, development, control and the application of reinforcement learning-based force planning for the autonomous grasping capabilities of the innovative assistive robotic exoskeleton gloves. Exoskeleton devices hold significant promise as valuable aids for patients with hand disabilities who may not achieve full recuperation through surgical interventions. However, the present iteration of exoskeleton glove systems encounters notable limitations in terms of design, control mechanisms, and human-machine interaction. Specifically, prevailing systems often suffer from bulkiness, lack of portability, and an inadequate equilibrium between lightweight construction and the essential functionalities imperative for daily tasks.
To address these challenges, this research undertakes a comprehensive exploration of diverse facets within the exoskeleton glove system domain. This encompasses a detailed focus on mechanical design, control strategies, and human-machine interaction. To address wearability and comfort, two distinct exoskeleton glove variations are devised, each rooted in different mechanisms. An innovative data-driven model-free force predictive control policy is posited to enable accurate force regulation. Rigorous clinical experiments are conducted to meticulously validate the efficacy of the system. Furthermore, a novel mechanism is seamlessly integrated into the design of a new low-profile exoskeleton glove, thereby augmenting wearability and comfort by minimizing size and weight. A deep reinforcement learning based control agent, which is trained within a simulation environment, is devised to facilitate real-time autonomous force planning.
In summary, the overarching objective of this research lies in rectifying the limitations inherent in existing exoskeleton glove systems. By spearheading advancements in mechanical design, control methodologies, perception capabilities, and wearability, the ultimate aim is to substantially enhance the functionality and overall efficacy of these devices within the sphere of assistive applications.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116452 |
Date | 11 October 2023 |
Creators | Xu, Wenda |
Contributors | Mechanical Engineering, Ben-Tzvi, Pinhas, Sandu, Corina, Abbott, Amos L., Southward, Steve C. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0026 seconds