Return to search

The mobility and stability of the human knee joint

Separating the study of kinematic geometry of the human knee from the study of its behaviour under load provides insight into the complex relationship between form and function at the joint. The development of a three-dimensional mathematical model which examines the mobility and stability of the joint in sequence is described in this thesis. A previously proposed model of knee mobility, in which the ligaments and ar- ticular surfaces act as rigid constraints between the bones in a single degree-of- freedom spatial mechanism, was re-examined and its limitations addressed. A new geometric-numerical approach to solving the model kinematics, capable of handling both idealised and more anatomical representations of the articular surfaces, was developed. A database of specimen-specific motion and geometry was established, based on cadaver studies. Articular contact kinematics and ligament length patterns were also quantified. In experiment, all components of passive knee movement were found to be coupled to the flexion angle, providing justification for the underlying concept of the model of knee mobility. Specimen-specific models of mobility were successful in predicting the main fea- tures of passive knee motion through a full range of flexion. Incorporation of second order tibial articular surfaces permitted the prediction of physiological motion com- patible with more realistic contact point movement. Through incorporation of continuous three-dimensional arrays of extensible lig- ament fibres, a preliminary model of knee stability was formulated. Although in need of further refinement, sample predictions of joint behaviour during a/p drawer and axial rotation have demonstrated the potential of the model in highlighting the subtleties of ligament mechanics. It was concluded that the sequential approach is appropriate for the study of joint behaviour in three dimensions and that, based on the success of the analogous two-dimensional theory, it provides an invaluable tool in the study of joint mechanics in activity and in the design and assessment of surgical procedures for treating knee injury and disease.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:302179
Date January 2000
CreatorsFeikes, Jennifer Dorothy
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:25df7636-8b88-4c8a-8e54-57b3a9cac525

Page generated in 0.0018 seconds