Aim: The aim of this research was to measure functional intraoral pressures using a newly developed method; specifically, three areas were examined. Firstly, this new approach to measurement allowed the equilibrium theory of tooth position to be re-addressed. Secondly, it allowed investigation the patterns of pressure change in the palatal midline during water swallowing. Lastly, this approach allowed a preliminary investigation of the affect of the viscosity of the food ingested on the pressures generated in the mouth.
Methods: The participants were 6 healthy volunteers (4 males, 2 females) recruited from the post-graduate students at the University of Otago, School of Dentistry. The age range was 25 to 35 years. All had full permanent dentitions, Angle Class I occlusions (normal) with acceptable overbite and overjet relationship, and none of them had a history of previous orthodontic treatment. For each of the subjects a cast chrome-cobalt baseplate was constructed to house 8 miniature strain gauge pressure transducers (Precision Measurement Co. Michigan). The location of the sensors were standardised as follows: Three sensors were paired on the buccal and lingual surfaces of the central, canine and first molar. Two palatal vault sensors were placed in the midline of the palate, one at level of the distal of the first premolar, and the second slightly anterior to the junction of the hard and soft palate. Simultaneous recordings were taken during a set of tasks including water swallows, saliva swallows and food ingestion.
Results: The results showed that swallowing was a highly complex wellcoordinated event, and that each individual had their own unique signature pattern of swallowing, characterised by pressure changes of high frequency, in excess of �1000 kPa/s.
Conclusions: The analysis of the pressure acting on the teeth showed that although the pattern and magnitude of pressure generated varied among the group, the observation of waveforms would suggest a tendency for no inherent balance between the buccal and the palatal pressures on the teeth during swallowing for any of the individuals tested.
This investigation of the pressure in the midline revealed an aspect previously not fully explored; these experiments showed that there were large and persistent negative pressures generated during swallowing, that preceded the positive pressures and which appear important in bolus propulsion
The patterns of swallowing and the magnitudes of pressure generated, changed with the different consistency of the various substances ingested. There was a general trend for increased pressures during swallowing of substrates that are more viscous; water showed the lowest pressures, followed by saliva and finally jelly.
Keywords: Tongue pressure, Intraoral pressures, Tongue dynamics, Swallowing.
Identifer | oai:union.ndltd.org:ADTP/208075 |
Date | January 2008 |
Creators | Kennedy, Daniel Lloyd, n/a |
Publisher | University of Otago. School of Dentistry |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Daniel Lloyd Kennedy |
Page generated in 0.0012 seconds