The use of electrospun polystyrene (PS) fibers to create continuous long range ordered multi-scale porous structures in titanium diboride (TiB2) is investigated in this work. The introduction of electrospun PS fibers as a sacrificial filler into a colloidal suspension of TiB2 allows for easy control over the pore size, porosity, and long range ordering of the porous structures of the sintered ceramic. Green bodies were formed by vacuum infiltrating an electrospun-fiber-filled mold with the colloidal TiB2 suspension. The size, volume, distribution, and dispersion of the pores were optimized by carefully selecting the sacrificial polymer, the fiber diameter, the solvent, and the solid content of TiB2. The green bodies were partially sintered at 2000 C in argon to form a multiscale porous structure via the removal of the PS fibers. Aligned continuous cylindrical pores were derived from the PS fibers in a range of ~5 - 20 μm and random porosity was revealed between the ceramic particles with the size of ~0.3 - 1 μm. TiB2 near-net-shaped parts with the multi-scale porosities (~50 to 70%) were successfully cast and sintered. The multi-scale porous structure produced from electrospun fibers was characterized both thermally and mechanically, at room temperature. The conductivity ranged from 12-31 W m^(-1) K^(-1) at room temperature and the compressive strength ranged from 2-30 MPa at room temperature. Analytical thermal and mechanical models were employed to understand and verify he processing-structure-properties relationship. Finally, a method was devised for estimating the effective thermal conductivity of candidate materials for UHTC applications at relevant temperatures using a finite difference model and a controlled sample environment. This low-cost processing technique facilitates the production of thermally and mechanically anisotropic structures into near-net shape parts, for extreme environment applications, such as ultra high temperature insulation and active cooling components. / MS / Society is on the cusp of hypersonic flight which will revolutionize defense, space and transport technologies. Hypersonic flight is associated with conditions like that of atmospheric re-entry, high heat and force or specific locations of a space craft. The realization of hypersonic flight relies on innovative materials to survive the harsh conditions for repeated flight. We have created a new material with tiny holes that can help prevent heat flow from the harsh atmosphere from damaging the hypersonic craft. Thesis tiny holes are made from placing a polymer fiber in an advanced ceramic (which withstand high temperatures) and removing the fiber to leave holes. The tiny hole’s effect on strength and heat flow have been studied, to understand how the tiny holes can be made better. It is difficult to test materials in the harsh atmosphere associated with hypersonic flight, so a program has been written to estimate thermal properties of candidate materials for hypersonic flight.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99423 |
Date | 01 February 2019 |
Creators | Hicks, David Cyprian |
Contributors | Materials Science and Engineering, Tallon Galdeano, Carolina, Liu, Guoliang, Seidel, Gary D. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds