Return to search

Pyrolyse- und Sinterverhalten Sol-Gel-abgeleiteter Al2O3-YAG-Fasern / Pyrolysis and Sintering Behavior of Sol–Gel-Derived Al2O3-YAG Fibers

Nichtwäßrige Sol-Gel-Vorstufen, die zu einem Mischgefüge aus Al2O3 und YAG führen (Volumenverhältnis 45 : 55), wurden zu Fasern versponnen, in unterschiedlichen Atmosphären pyrolysiert und abschließend gesintert. Die strukturelle Ent-wicklung während der Pyrolyse der Gel-Fasern wurde in Abhängigkeit von Pyrolysetemperatur (200-850 °C) und -atmosphäre beschrieben. Die Zusammenhänge zwischen den mittels der Pyrolyseparameter variierten amorphen Strukturen und dem daraus resultierenden Kristallisations- und Sinterverhalten sowie den mechanischen Fasereigenschaften wurden gezeigt. Die isotropen Gel-Fasern sind frei von Poren und weisen lokal regelmäßig angeordnete, organische Domänen mit mittleren Abständen von 2 nm innerhalb des anorganischen Matrixgerüsts auf. Während der Pyrolyse auftretende Strukturveränderungen hängen stark von der Atmosphäre und der Temperatur ab. In Luft- und Sauerstoffatmosphäre trat ab 600 °C innerhalb der Fasern lokal eine Kristallisation von YAG und Korund in Form kugeliger Bereiche auf, die zum Bruch der Fasern bereits während der Pyrolyse führten. Die Abgabe organischer Bestandteile erfolgte bei Pyrolyse in Stickstoff im wesentlichen zwischen 300 °C und 500 °C, blieb jedoch auch bei höheren Temperaturen unvollständig. In Wasserdampf-Atmosphäre kam es durch Hydrolysereaktionen zwischen 250 °C und 385 °C zu einer verbesserten Abgabe der organischen Bestandteile. Der Kohlenstoffgehalt sinkt bei 385 °C unter 2 Masse-%. Werden dem Wasserdampf saure Gase wie z.B. Stickoxide zugesetzt, wird um 200 °C die Hydrolyse und Abgabe der Organik zusätzlich verstärkt. Nach Pyrolyse in Stickstoff oder wasserhaltigen Atmosphären blieben die Fasern amorph. Bei Pyrolyse in Stickstoff war die Struktur der Fasern porenfrei, wobei die organischen Pyrolysatreste wie in den Gel-Fasern als regelmäßig angeordnete, isolierte Bereiche innerhalb einer anorganischen Matrix vorlagen. In Wasserdampf bildete sich ab 250 °C aus den organischen Domänen eine geordnete Porenstruktur, die sich mit ansteigender Temperatur vergröberte. Auch in der aus verdampfter Salpetersäure erzeugten Atmosphäre bildeten sich Poren. Die Porendurchmesser und spezifischen Oberflächen der Fasern blieben jedoch geringer als in reinem Wasserdampf. In dem anorganischen Matrixgerüst änderten sich durch die Pyrolyse die Koordinationsverhältnisse der Al-Ionen. Ausgehend von der mehrheitlich 6-fachen Koordination in den Gel-Fasern kam es zunehmend zur Umlagerung in die 4- und 5-fache Koordination. Bei Pyrolyse in reinem Wasserdampf war diese Koordinationsveränderung deutlich schwächer ausgeprägt als in Stickstoff oder der Atmosphäre aus verdampfter Salpetersäure. Während der Sinterung treten intermediär gamma-Al2O3 und hexagonales YAlO3 als metastabile Phasen vor der Kristallisation von YAG auf. Mit der Kristallisation von Korund schließt die Phasenbildung der Al2O3-YAG-Fasern je nach vorangegangener Pyrolysebehandlung zwischen 1275 °C und 1315 °C ab. Die Abweichungen in der Kristallisationstemperatur bzw. Keimbildungsdichte von Korund und im Sinterverhalten ließen sich auf die Unterschiede in den amorphen Strukturen der pyrolysierten Fasern zurückführen. Hohe Anteile 6-fach koordinierter Al-Ionen und eine zu hohen spezifischen Oberflächen führende, feine Porosität erwiesen sich als günstige Strukturmerkmale für pyrolysierte Fasern. Die dabei entstandenen feinkörnigen, homogenen Gefüge konnten dicht gesintert werden und hatten die höchsten Festigkeiten und E-Moduln. Kohlenstoffgehalte bis zu 2 Masse-% wirkten sich in den offenporigen Zwischenprodukten nicht negativ auf das Sinterverhalten aus. In dieser Arbeit wurde gezeigt, daß die Kristallisation der Sol-Gel-abgeleiteten Fasern und damit auch die Ausbildung der keramischen Gefüge in entscheidendem Maße von den Pyrolysebedingungen abhängen. Bei einheitlicher Synthese der Gel-Fasern lassen sich durch die Pyrolysebehandlung unterschiedliche Strukturen in den amorphen Zwischenprodukten einstellen, die durch ihre spezifisches Kristallisations- und Sinterverhalten zu unterschiedlichen keramischen Gefügen in den Fasern führen. Die Optimierung der Gefüge vorstufenabgeleiteter Keramiken durch Zusatz von Keimen ("Seeding") ist seit längerem bekannt. In Ergänzung dazu bietet die gezielte Wahl der Pyrolysebedingungen eine weitere Möglichkeit zur Steuerung der Gefügeausbildung in Sol-Gel-Keramiken. / Ceramic fibers of Al2O3-YAG composition (volume ratio 45 : 55) were prepared by spinning non-aqueous sol-gel precursors to fibers which were then pyrolyzed in various atmospheres and finally sintered. Structural development of the gel fibers upon pyrolysis at temperatures between 200 °C and 850 °C was described for different atmospheres. Variation of pyrolysis conditions lead to different amorphous structures. A correlation between the amorphous structures and their crystallization and sintering behavior as well as mechanical fiber properties could be established. The gel fibers have an isotropic, pore-free structure which is characterized by an inorganic matrix that contains organic domains in a locally ordered arrangement with mean distances of 2 nm. Alteration of this structure strongly depends on the type of atmosphere and temperature during pyrolysis. In air and oxygen above 600 °C local, spherulitic crystallization of YAG and corundum occurs within the fibers and leads to fracture of the fibers. In nitrogen, organic constituents are mainly removed between 300 and 500 °C, but residues remain even at higher temperatures. Water vapor hydrolyses organic constituents and enhances their release at 200-385 °C. Thus carbon contents drops below 2 wt.-% at 385 °C. Additional acceleration of hydrolysis at ~200 °C can be achieved by addition of acidic gases like nitric oxide to the moist atmosphere. The structure of fibers pyrolysed in nitrogen or moist atmospheres remains amorphous. After pyrolysis in nitrogen the fibers are pore-free and the organic residues still appear as locally ordered domains within an inorganic matrix. In water vapor from 250 °C on, the release of organics leads to the formation of ordered micropores that coarsen with further increasing temperature. In the atmosphere of evaporated nitric acid, pores form too, but pore sizes and specific surface areas of the fibers are lower than in pure water vapor. The coordination of Al-ions in the inorganic network is altered by pyrolysis. Gel fibers mainly contain 6-fold coordinated Al-ions. With increasing temperature a rearrangement of part of the octahedrally coordinated Al-ions to 4- and 5-fold coordination was observed. While this rearrangement was only weakly pronounced for fibers pyrolysed in water vapor, in nitrogen or the atmosphere that was derived from evaporated nitric acid a significantly higher proportion of 6-fold coordinated Al-ions rearranged to lower coordination numbers. During the sintering process gamma-Al2O3 and hexagonal YAlO3 are formed as intermediate metastable phases prior to the crystallization of YAG. Formation of crystalline phases in the Al2O3-YAG fibers completes with the crystallization of corundum at 1275 to 1315 °C depending on pyrolysis conditions. Differences in crystallization temperature and nucleation density of corundum were put down the structural features of pyrolysed, amorphous fibers. A high proportion of 6-fold coordinated Al-ions and a high specific surface caused by fine pores revealed as favorable characteristics of low corundum crystallization temperature and high nucleation density. Such fibers could be fully densified resulting in the highest strength and Young's moduli in the ceramic fibers. Carbon contents up to 2 wt.-% were not deleterious to the densification of pyrolysed fibers with an open porous structure. The results presented in this study show that crystallization and microstructural evolution of sol-gel derived ceramic fibers critically depend on pyrolysis conditions. Different amorphous structures that lead to altered ceramic microstructures can be obtained from uniformly synthesized gel fibers by variation of pyrolysis conditions. Seeding is a well known process for the microstructural optimization of precursor derived ceramics. As a supplement the choice of suitable pyrolysis conditions is a further tool for the microstructure control in sol-gel ceramics.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:570
Date January 2002
CreatorsKrüger, Reinhard
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds