Return to search

Rapid design and simulation of functional digital materials

Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2016. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 113-118). / Digital fabrication aims to bring the programmability of the digital world into the physical world and has the potential to radically transform the way we make things. We are are developing a novel digital fabrication technique where a small basis set of discrete part types, called "digital materials", are reversibly joined into large assemblies with embedded functionality. Objects constructed this way may be programmed with exotic functional behavior based on the composition of their constituent parts. In this thesis I build an end-to end computer-aided design (CAD), simulation, and manufacturing (CAM) pipeline for digital materials that respects the discretization of the parts in its underlying software representation. I propagate the same abstract geometric "cell" representation of parts from the design workflow into simulation and path planning. I develop a dynamic model for simulating anisotropic, multimaterial assemblies of cells with embedded mechanical and electronic functionality based on local interactions. I demonstrate the similarities between my mechanical model and the Timoshenko Beam Element. I note an advantage of my model for simulating flexural joints is its non-linear treatment of angular displacements - allowing for large angular deformations to be simulated without costly remeshing. I implement this model in software and demonstrate its potential for parallelization by calculating each cell-cell interaction in a separate core of the GPU. I compare my simulation results with a professional multiphysics software package. I demonstrate that my tool facilitates rapid exploration of the design space around functional digital materials with several examples. / by Amanda Paige Ghassaei. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/107567
Date January 2016
CreatorsGhassaei, Amanda Paige
ContributorsNeil Gershenfeld., Program in Media Arts and Sciences (Massachusetts Institute of Technology), Program in Media Arts and Sciences (Massachusetts Institute of Technology)
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format118 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.002 seconds