Return to search

A Technological Solution to Identify the Level of Risk to Be Diagnosed with Type 2 Diabetes Mellitus Using Wearables

El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / This paper proposes a technological solution using a predictive analysis model to identify and reduce the level of risk for type 2 diabetes mellitus (T2DM) through a wearable device. Our proposal is based on previous models that use the auto-classification algorithm together with the addition of new risk factors, which provide a greater contribution to the results of the presumptive diagnosis of the user who wants to check his level of risk. The purpose is the primary prevention of type 2 diabetes mellitus by a non-invasive method composed of the phases: (1) Capture and storage of risk factors; (2) Predictive analysis model; (3) Presumptive results and recommendations; and (4) Preventive treatment. The main contribution is in the development of the proposed application. / Revisión por pares

Identiferoai:union.ndltd.org:PERUUPC/oai:repositorioacademico.upc.edu.pe:10757/653787
Date01 January 2021
CreatorsNuñovero, Daniela, Rodríguez, Ernesto, Armas, Jimmy, Gonzalez, Paola
Source SetsUniversidad Peruana de Ciencias Aplicadas (UPC)
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/article
SourceRepositorio Academico - UPC, Universidad Peruana de Ciencias Aplicadas (UPC), Smart Innovation, Systems and Technologies, 202, 169, 175
Rightsinfo:eu-repo/semantics/openAccess
Relationhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85098159469&doi=10.1007%2f978-3-030-57566-3_17&origin=inward&txGid=1d43fb6903477dfb05950f1ad8911187

Page generated in 0.01 seconds