Return to search

Diffusion kurtosis imaging (DKI) in the human calf muscles

Human calf muscle injuries are relatively common among individuals from various backgrounds. Miniscule tears in the muscles of the calf such as the medial gastrocnemius, lateral gastrocnemius, and soleus, may be difficult to identify using traditional imaging modalities. Diffusion kurtosis imaging (DKI), is one type of diffusion imaging that has presented with some strengths over diffusion tensor imaging (DTI) and diffusion weighted imaging (DWI). Though DTI studies in the human calf have been published, no DKI studies in the human calf exist to our knowledge. The objective of this study is to determine whether or not DKI is applicable in identifying quantitative changes between states of dorsiflexion and relaxation in the human calf. One female participant underwent DKI. Data from the scanning was quantitatively analyzed via the use of FSLView and the NODDI MATLAB toolbox. A change in mean voxel intensity in the calf and mean orientation dispersion index was identified in each of the five slices analyzed, in each muscle group (medial gastrocnemius, lateral gastrocnemius, and soleus). Most of the changes, whether an increase or decrease in mean value—between the states of dorsiflexion and relaxation—were statistically significant. We conclude that DKI may have a future in identifying physical/quantitative changes in calf muscles between the tense/relaxed states. Further studies using DKI on the human calf should be conducted in the future and address the limitations of the current study. Further investigation could possibly benefit individuals with miniscule calf muscle injuries.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/14596
Date17 February 2016
CreatorsLindquist, Mirabelle
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.002 seconds