Return to search

PROCESS DEVELOPMENT FOR THE PRODUCTION AND SEPARATION OF MEDIUM-CHAIN-LENGTH POLY(3-HYDROXYALKANOATES) BY PSEUDOMONAS PUTIDA KT2440

A series of medium-chain-length poly(3-hydroxyalkanoates) (MCL-PHAs) with enriched 3-hydroxynonanoate (HN) content (up to 95.8 mol% compared to 68.6 mol% without acrylic acid) or 3-hydroxyoctanoate (HO) content (up to 97.5 mol% compared to 88.0 mol% without acrylic acid) was produced in continuous culture by co-feeding fatty acid and glucose plus inhibiting fatty acid β-oxidation using acrylic acid. Using a similar feeding strategy in fed-batch fermentation, similar monomeric compositions but a higher biomass concentration and PHA content could be obtained. However, at a lower growth rate (0.15 h-1 vs. 0.25 h-1), the biomass concentration and PHA content could be greatly enhanced from 17.1 to 71.4 g L-1 and from 64.4 to 75.5%, respectively, while the HN content decreased slightly from 92.2 to 88.9 mol%. PHAs produced under acrylic acid inhibition possessed improved physical properties including a higher melting point, faster crystallization rate, and greater tensile strength at break and Young’s modulus.
Two recovery methods were developed for the recovery of MCL-PHA from Pseudomonas putida KT2440. One applied acetone extraction which was capable of recovering all the PHA from the cells with a purity of 91.6% and no detectable polymer molecular weight loss using Soxhlet extraction. Further purification was achieved by redissolving in acetone and reprecipitating in cold methanol. The other method used sodium hydroxide to solubilize the non-PHA cellular material. PHA purity of about 85% was obtained from a biomass containing 65.6% PHA after treatment with 0.2 N NaOH at 22 ± 1oC for 2 h or with 0.1 N at 80 ± 1oC for 15 min. However, a treatment at 22 ± 1oC followed by a second NaOH treatment at 80 ± 1oC resulted in higher PHA purity (94.7%) with a recovery efficiency of 88%. Under these conditions, NaOH digestion had a negligible effect on PHA molecular weight. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2010-08-30 22:44:44.501

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/6002
Date31 August 2010
CreatorsJIANG, XUAN
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0018 seconds