Bacillus subtilis, a model Gram-positive soil bacterium, employs two distinct mechanisms in its membrane adaptation to low temperature: 1) Long-term adaptation to suboptimal temperature is accomplished by increasing the ratio of anteiso- to iso-branched fatty acids in the membrane lipids. 2) After a sudden temperature decrease, the oxygen-dependent fatty acid desaturase (Des) is induced which desaturates fatty-acyl chains incorporated in membrane lipids. The transcription of the gene encoding desaturase, des, is activated by the decrease of the membrane order, via two- component system DesK-DesR. In this work, I studied the influence of cultivation conditions on the mechanisms of B. subtilis membrane adjustments for a low temperature employing fatty acid analysis, fluorescence spectroscopy, differential scanning calorimetry and methods of molecular biology. In the first part of this work, I examined the impact of the cultivation medium on the composition and biophysical features of the B. subtilis cytoplasmic membrane during growth under the optimal (40 řC) and suboptimal (20 řC) cultivation temperature. I compared the nutrient-rich complex medium containing glucose and the mineral medium supplemented with either glucose or glycerol. The results obtained showed the crucial importance of medium...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:299189 |
Date | January 2011 |
Creators | Beranová, Jana |
Contributors | Konopásek, Ivo, Branny, Pavel, Holoubek, Aleš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds