The topology and dynamics of biomolecules are intricately linked with their biological function. The focus of this thesis is the NMR-based measurement of topology and dynamics in biomolecular systems, and methods of measuring immersion depth and orientation of membrane-associated molecules.
In detergent micelles and lipid bilayers, the local concentrations of hydrophobic and hydrophilic molecules are a function of their bilayer immersion depth. For paramagnetic molecular oxygen or metal cations, the magnitudes of the associated paramagnetic isotropic contact shifts and relaxation rate enhancements (PREs) are therefore depth-dependent. NMR measurements of these effects reveal the immersion depth of bilayer- or detergent-associated molecules.
This work first explores transbilayer oxygen solubility and thermodynamics, as measured from contact shifts and PREs of the constituent lipid molecules in the presence of 30 bar oxygen. Contact shifts revealed the transmembrane O2 solubility profile spans a factor of seven across the bilayer, while PREs indicated that oxygen partitioning into bilayers and dodecylphosphocholine (DPC) micelles is entropically driven.
Next, this work describes how paramagnetic effects from molecular oxygen and Ni(II) cations may be employed to study the immersion depth and topology of drug and protein molecules in DPC micelles. In one study, the positioning of the amphipathic drug imipramine in micelles was determined from O2- and Ni(II)-induced contact shifts. A second study, relying solely on O2-induced PREs, determined the tilt angles and micelle immersion depths of the two alpha helices in a monomeric mutant of the membrane protein phospholamban. A third study utilized 19F NMR to explore the importance of juxtamembraneous tryptophans on the topology of the membrane protein synaptobrevin, via O2-induced contact shifts and solvent-induced isotope shifts of a juxtamembraneous 19F-phenylalanine. Comparison of synaptobrevin constructs with zero, one, and two juxtamembraneous tryptophans revealed that while one tryptophan is sufficient to ‘anchor’ the protein in micelle, the addition of a second tryptophan dampens local dynamics.
These solution state NMR studies demonstrate how paramagnetic effects from dissolved oxygen, complemented with measurements of local water exposure, provide detailed, accurate descriptions of membrane immersion depth and topology. These techniques are readily extended to the study of a wide range of biomolecules.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/33901 |
Date | 06 December 2012 |
Creators | Al-Abdul-Wahid, Mohamed Sameer |
Contributors | Prosser, Robert Scott |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds