The Cayley-Hamilton Theorem is an important result in the study of linear transformations over finite dimensional vector spaces. In this thesis, we show that the Cayley-Hamilton Theorem can be extended to self-adjoint trace-class operators and to closed self-adjoint operators with trace-class resolvent over a separable Hilbert space. Applications of these results include calculating operators resolvents and finding the inverse of a frame operator.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2181 |
Date | 16 August 2005 |
Creators | Teguia, Alberto Mokak |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0017 seconds