Tesis por compendio / [ES] El aumento de la esperanza de vida conlleva la aparición de problemas muscoloesqueléticos afectando a la calidad de vida de los pacientes. Las nuevas terapias regenerativas óseas se centran en el uso de las células madre mesenquimales, MSCs, encargadas de la regeneración del tejido in vivo. La inducción de un fenotipo osteogénico prediferenciado in vitro, previo a la implantación de las MSCs, resulta en una mejor capacidad de regeneración del tejido óseo. Habitualmente se han empleado medios de diferenciación osteogénica que contienen dexametasona. Estos métodos son poco eficientes, por lo que el uso de métodos físicos está adquiriendo relevancia.
El hueso es un tejido con propiedades piezoeléctricas debido a las fibras de colágeno que forman parte de su matriz extracelular. Este estímulo ha sido relacionado con su capacidad de responder al estrés mecánico y autoregenerarse, donde juegan un papel importante las MSCs. Éstas se encuentran en un entorno electroactivo, y son precisamente estas señales físicas las que pueden influir en su proceso de diferenciación osteogénica pudiendo ser empleadas para su prediferenciación in vitro de forma efectiva. Para comprobar esta hipótesis, en la presente Tesis Doctoral se han diseñado soportes de cultivo piezoeléctricos en 2 y 3 dimensiones basados en el uso del polímero piezoeléctrico polifluoruro de vinilideno (PVDF) combinados con partículas magnetostrictivas de ferrita de cobalto (CFO). Esta combinación permite la estimulación de los soportes de cultivo aplicando un campo magnético con un biorreactor. Este campo magnético genera la deformación del componente magnetostrictivo, que es transmitida a la matriz polimérica, deformándola y generando un campo eléctrico. Ésta última es transmitida a las células cultivadas en estos soportes para estudiar su efecto sobre la diferenciación osteogénica.
En el primer capítulo se desarrollaron y caracterizaron membranas electroactivas de PVDF fabricadas por el método de separación de fases inducida por no-solventes. Se empleó etanol como no-solvente, dando lugar a membranas homogéneas altamente porosas. Estas cristalizan en fase g. Se optimizó un recubrimiento basado en la técnica capa a capa (LbL), empleando recombinámeros similares a la elastina (ELRs) que contenían secuencias de adhesión celular RGD. Se estudió la respuesta celular inicial de las MSCs y se comparó con los mismos soportes recubiertos únicamente con fibronectina adsorbida. La presencia de los ELRs es necesaria para promover la adhesión inicial de las MSCs en este tipo de soportes. En el segundo capítulo se combinó el PVDF con CFO, usando agua como no-solvente. Las membranas eran no simétricas, con una superficie lisa, que fue empleada para cultivo celular, con una mayoría en fase b, la más electroactiva. Se recubrieron y caracterizaron las membranas mediante LbL con colágeno tipo I y heparina. Se estudió el comportamiento de las MSCs sobre el LbL, resultando esencial para la proliferación celular en el caso de las membranas PVDF-CFO. En el capítulo tres se desarrollaron films de PVDF y PVDF-CFO cristalizados en presencia del líquido iónico [Bmim][Cl]. La presencia de éste indujo la nucleación del PVDF en fase b. Las MSCs eran capaces de adherirse y proliferar. Se realizaron ensayos de estimulación piezoeléctrica empleando un biorreactor magnético. Las MSCs respondieron a la estimulación incrementado la longitud de sus adhesiones focales, así como reduciendo la vimentina en el citoplasma. Finalmente, se diseñaron soportes de cultivo piezoeléctricos en 3D. Para ello se desarrollaron microesferas de PVDF y PVDF-CFO mediante la técnica de electropulverizado. Las microesferas se encapsularon en hidrogeles de gelatina junto con las MSCs. Se estimularon y tras 7 días, se observó un incremento en la expresión del factor de transcripción RUNX2 en las muestras estimuladas demostrando que la estimulación piezoeléctrica es capaz de activar en mayor medida la diferenciación de las MSCs. / [CA] L'augment de l'esperança de vida comporta l'aparició de problemes muscoloesquelètics afectant la qualitat de vida dels pacients. Les noves teràpies regeneratives òssies es centren en l'ús de les cèl·lules mare mesenquimals, MSCs, encarregades de la regeneració del teixit in vivo. La inducció d'un fenotip osteogènic prediferenciat in vitro, previ a la implantació de les MSCs, resulta en una millor capacitat de regeneració del teixit ossi. Habitualment s'han fet servir mitjans de diferenciació osteogènica que contenen dexametasona. Aquests mètodes són poc eficients, per la qual cosa l'ús de mètodes físics està adquirint rellevància.
L'os és un teixit amb propietats piezoelèctriques a causa de les fibres de col·lagen que formen part de la seva matriu extracel·lular. Aquest estímul ha estat relacionat amb la capacitat de respondre a l'estrès mecànic i autoregenerar-se, on juguen un paper important les MSCs. Aquestes es troben en un entorn electroactiu, i són precisament aquests senyals físics els que poden influir en el seu procés de diferenciació osteogènica podent ser emprats per a la seva prediferenciació in vitro de manera efectiva. Per comprovar aquesta hipòtesi, a la present tesi doctoral s'han dissenyat suports de cultiu piezoelèctrics en 2 i 3 dimensions basats en l'ús del polímer piezoelèctric polifluorur de vinilidè (PVDF) combinats amb partícules magnetostrictives de ferrita de cobalt (CFO). Aquesta combinació permet l'estimulació dels suports de cultiu aplicant un camp magnètic amb un bioreactor. Aquest camp magnètic genera la deformació del component magnetostrictiu, que és transmesa a la matriu polimèrica, deformant-la i generant un camp elèctric. Aquesta última és transmesa a les cèl·lules cultivades en aquests suports per estudiar-ne l'efecte sobre la diferenciació osteogènica.
En el primer capítol es van desenvolupar i caracteritzar membranes electroactives de PVDF fabricades pel mètode de separació de fases induïda per no solvents. Es va emprar etanol com a no-solvent, donant lloc a membranes homogènies altament poroses. Aquestes cristal·litzen en fase g. S'optimitzà un recobriment basat en la tècnica capa a capa (LbL), emprant recombinàmers similars a l'elastina (ELRs) que contenien seqüències d'adhesió cel·lular RGD. Es va estudiar la resposta cel·lular inicial de les MSCs i es va comparar amb els mateixos suports recoberts únicament amb fibronectina adsorbida. La presència dels ELR és necessària per promoure l'adhesió inicial de les MSCs en aquest tipus de suports. En el segon capítol es va combinar el PVDF amb CFO, usant aigua com a no-solvent. Les membranes eren no simètriques, amb una superfície llisa, que va ser emprada per a cultiu cel·lular, amb una majoria en fase b, la més electroactiva. Es van recobrir i caracteritzar les membranes mitjançant LbL amb col·lagen tipus I i heparina. Es va estudiar el comportament de les MSCs sobre el LbL, resultant essencial per a la proliferació cel·lular en el cas de les membranes PVDF-CFO. Al capítol tres es van desenvolupar films de PVDF i PVDF-CFO cristal·litzats en presència del líquid iònic [Bmim][Cl]. La seva presència va induir la nucleació del PVDF en fase b. Les MSCs eren capaces d'adherir-se i proliferar. Es van realitzar assajos d'estimulació piezoelèctrica emprant un bioreactor magnètic. Les MSCs van respondre a l'estimulació incrementant la longitud de les seves adhesions focals, així com reduint la vimentina al citoplasma. Finalment, es van dissenyar suports de cultiu piezoelèctrics en 3D. Per això es van desenvolupar microesferes de PVDF i PVDF-CFO mitjançant la tècnica d'electropolveritzat. Les microesferes es van encapsular en hidrogels de gelatina juntament amb les MSCs. Es van estimular i després de 7 dies, es va observar un increment en l'expressió del factor de transcripció RUNX2 a les mostres estimulades demostrant que l'estimulació piezoelèctrica és capaç d'activar més la diferenciació de les MSCs. / [EN] Life expectancy increase entails the presence of musculoskeletal disorders producing a substantial impact on patient's quality of life. New bone regenerative therapies are focused on the use of mesenchymal stem cells (MSCs), the main effectors of bone regeneration in vivo. Over the years, it has been demonstrated that the induction of a pre-differentiated phenotype in vitro, before MSCs implantation, results in a better capacity for bone tissue regeneration. For this purpose, biochemical approaches based on the use of osteogenic differentiation medium containing dexamethasone have traditionally been used. These methods are not efficient, which has favoured the use of physical methods as an alternative.
Bone is a piezoelectric tissue due to the collagen fibres that conform its extracellular matrix. This stimulus has been related to its ability to respond to mechanical stress and self-regenerate, a process in which MSCs play a key role. MSCs are subjected to an electroactive environment. It is hypothesised that these physical signals may influence their osteogenic differentiation process and be used to effectively pre-differentiate them in vitro. To test this hypothesis, along this Doctoral Thesis, piezoelectric cell culture supports have been designed in 2 and 3 dimensions based on the use of the piezoelectric polymer poly(vinylidene) fluoride (PVDF) combined with magnetostrictive cobalt ferrite oxide (CFO) nanoparticles. This combination allows the stimulation of culture supports by applying a magnetic field with a bioreactor. This magnetic field induces the deformation of the magnetostrictive component, which is transmitted to the polymeric matrix, generating a deformation and producing an electric field, which is transmitted to the MSCs to study its effect on their osteogenic differentiation.
In the first chapter, electroactive PVDF membranes manufactured by the non-solvent induced phase separation technique were developed and characterised. Ethanol was used as a non-solvent, which gave rise to highly porous homogeneous membranes crystallised in the g phase. A coating protocol based on the layer-by-layer (LbL) technique, using elastin-like recombinamers (ELRs) containing RGD cell adhesion sequences, was optimised. MSCs' initial cellular response was studied and compared with the membranes coated with adsorbed fibronectin. The presence of the ELRs was necessary to promote MSCs' initial adhesion in this type of support. In the second chapter, PVDF was combined with CFO, using water as a non-solvent. The membranes were not symmetrical, with a smooth surface used for cell culture, with a majority in phase b, the most electroactive. Membranes were coated and characterised by LbL with type I collagen and heparin. The behaviour of MSCs on LbL was studied, essential for cell proliferation in the case of PVDF-CFO membranes. In chapter three, PVDF and PVDF-CFO films crystallised in the presence of the ionic liquid [Bmim][Cl] were developed. The presence of ionic liquid induced PVDF nucleation in the b phase. MSCs were able to adhere and proliferate. Piezoelectric stimulation tests were performed using a magnetic bioreactor. MSCs responded to stimulation by increasing the length of their focal adhesions and reducing vimentin in the cytoplasm. Finally, 3D piezoelectric culture supports were designed. For this, PVDF and PVDF-CFO microspheres were developed using the electrospray technique. The microspheres were encapsulated in gelatin hydrogels together with the MSCs. They were stimulated, and after 7 days, an increase in the expression of the transcription factor RUNX2 was observed in the stimulated samples, demonstrating that piezoelectric stimulation is capable of activating the differentiation of MSCs to a greater extent. / La presente tesis doctoral no podría haberse realizado sin la financiación del
Ministerio de Economía y Competitividad a través de la beca para formación de personal
investigador BES-2017-080398 y a la Agencia Estatal de Investigación a través de los
proyectos PID2019-106000RB-C21 / AEI / 10.13039/501100011033, PID2019-106099RB-
C41 y –C43 / AEI / 10.13039/501100011033. / Guillot Ferriols, MT. (2022). Electroactive Environments for Mesenchymal Stem Cells Osteogenic Differentiation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191003 / Compendio
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/191003 |
Date | 30 December 2022 |
Creators | Guillot Ferriols, María Teresa |
Contributors | Gallego Ferrer, Gloria, Gómez Ribelles, José Luís, Lanceros Mendez, Senen, Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia, Agencia Estatal de Investigación |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C43/ES/DESARROLLO DE ANDAMIAJES BIOMIMETICOS ACTIVOS PARA EL ESTUDIO DE MICROENTORNO DE TUMOR EN OSTEOSARCOMA/, info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C41/ES/MICROGELES BIOMIMETICOS PARA EL ESTUDIO DE LA GENERACION DE RESISTENCIAS A FARMACOS EN EL MIELOMA MULTIPLE/, info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106000RB-C21/ES/HIDROGELES BIOMIMETICOS IMPRIMIBLES CON PRESENTACION DE FACTORES DE CRECIMIENTO EFICIENTE PARA ESTUDIOS DE HEPATOTOXICIDAD DE ALTO RENDIMIENTO/, info:eu-repo/grantAgreement/AEI//BES-2017-080398/ES/AYUDAS PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-GUILLOT FERRIOLS/ |
Page generated in 0.0025 seconds