Overset, or Chimera, meshes are used to discretize the governing equations within a computational domain using multiple meshes that overlap in an arbitrary manner. The overset meshing technique is most applicable to problems dealing with multiple or moving bodies. Deep water simulations were carried out using both single and overset grid techniques for the evaluation of the overset grid application. These simulations were carried out using the commercial CFD code STAR-CCM+ by CD-adapco. The geometry simulated is that of a SES model (T-Craft) tested at the Naval Surface Warfare Center Carderock Division. The craft is simulated with two degrees of freedom, allowing movement in heave and pitch in response to displacement of the free surface. Agreement between the single and overset grid techniques was deemed reasonable to extend to future shallow water cases. However, due to longer run times of the overset mesh, the traditional or single mesh technique should be employed whenever applicable. In order to extend existing full craft CFD simulations of a surface effect ship (SES) into shallow water and maneuvering cases, an overset mesh is needed. Simulations of the SES were performed and monitored at various depth Froude numbers resulting in subcritical, critical, and supercritical flow regimes. Resistance, pitch response, and free surface response of the SES were compared between the shallow water simulations. The SES produced wider wakes, perpendicular to the craft, at simulations closer to the critical flow regime. Critical flow occurs at a depth Froude number between 0.9 and 0.95. Progression of shallow water effects through the three flow regimes agrees well with shallow water theory. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52558 |
Date | 15 October 2014 |
Creators | Lyons, David Geoffrey |
Contributors | Aerospace and Ocean Engineering, Neu, Wayne L., McCue-Weil, Leigh S., Brown, Alan J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0132 seconds