L’OLAP (On-Line Analytical Processing) est le paradigme principal pour accéder aux données multidimensionnelles dans les entrepôts de données. Pour obtenir une haute expressivité d’interrogation, malgré un petit effort de formulation de la requête, OLAP fournit un ensemble d’opérations (comme drill-down et slice-and-dice ) qui transforment une requête multidimensionnelle en une autre, de sorte que les requêtes OLAP sont normalement formulées sous la forme de séquences appelées Sessions OLAP. Lors d’une session OLAP l’utilisateur analyse les résultats d’une requête et, selon les données spécifiques qu’il voit, applique une seule opération afin de créer une nouvelle requête qui lui donnera une meilleure compréhension de l’information. Les séquences de requêtes qui en résultent sont fortement liées à l’utilisateur courant, le phénomène analysé, et les données. Alors qu’il est universellement reconnu que les outils OLAP ont un rôle clé dans l’exploration souple et efficace des cubes multidimensionnels dans les entrepôts de données, il est aussi communément admis que le nombre important d’agrégations et sélections possibles, qui peuvent être exploités sur des données, peut désorienter l’expérience utilisateur. / OLAP (On-Line Analytical Processing) is the main paradigm for accessing multidimensional data in data warehouses. To obtain high querying expressiveness despite a small query formulation effort, OLAP provides a set of operations (such as drill-down and slice-and-dice) that transform one multidimensional query into another, so that OLAP queries are normally formulated in the form of sequences called OLAP sessions. During an OLAP session the user analyzes the results of a query and, depending on the specific data she sees, applies one operation to determine a new query that will give her a better understanding of information. The resulting sequences of queries are strongly related to the issuing user, to the analyzed phenomenon, and to the current data. While it is universally recognized that OLAP tools have a key role in supporting flexible and effective exploration of multidimensional cubes in data warehouses, it is also commonly agreed that the huge number of possible aggregations and selections that can be operated on data may make the user experience disorientating.
Identifer | oai:union.ndltd.org:theses.fr/2013TOUR4022 |
Date | 13 December 2013 |
Creators | Aligon, Julien |
Contributors | Tours, Giacometti, Arnaud, Marcel, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds