Return to search

Noise detection in classification problems / Detecção de ruídos em problemas de classificação

In many areas of knowledge, considerable amounts of time have been spent to comprehend and to treat noisy data, one of the most common problems regarding information collection, transmission and storage. These noisy data, when used for training Machine Learning techniques, lead to increased complexity in the induced classification models, higher processing time and reduced predictive power. Treating them in a preprocessing step may improve the data quality and the comprehension of the problem. This Thesis aims to investigate the use of data complexity measures capable to characterize the presence of noise in datasets, to develop new efficient noise ltering techniques in such subsamples of problems of noise identification compared to the state of art and to recommend the most properly suited techniques or ensembles for a specific dataset by meta-learning. Both artificial and real problem datasets were used in the experimental part of this work. They were obtained from public data repositories and a cooperation project. The evaluation was made through the analysis of the effect of artificially generated noise and also by the feedback of a domain expert. The reported experimental results show that the investigated proposals are promising. / Em diversas áreas do conhecimento, um tempo considerável tem sido gasto na compreensão e tratamento de dados ruidosos. Trata-se de uma ocorrência comum quando nos referimos a coleta, a transmissão e ao armazenamento de informações. Esses dados ruidosos, quando utilizados na indução de classificadores por técnicas de Aprendizado de Maquina, aumentam a complexidade da hipótese obtida, bem como o aumento do seu tempo de indução, além de prejudicar sua acurácia preditiva. Trata-los na etapa de pré-processamento pode significar uma melhora da qualidade dos dados e um aumento na compreensão do problema estudado. Esta Tese investiga medidas de complexidade capazes de caracterizar a presença de ruídos em um conjunto de dados, desenvolve novos filtros que sejam mais eficientes em determinados nichos do problema de detecção e remoção de ruídos que as técnicas consideradas estado da arte e recomenda as mais apropriadas técnicas ou comitês de técnicas para um determinado conjunto de dados por meio de meta-aprendizado. As bases de dados utilizadas nos experimentos realizados neste trabalho são tanto artificiais quanto reais, coletadas de repositórios públicos e fornecidas por projetos de cooperação. A avaliação consiste tanto da adição de ruídos artificiais quanto da validação de um especialista. Experimentos realizados mostraram o potencial das propostas investigadas.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29112016-155215
Date22 June 2016
CreatorsLuís Paulo Faina Garcia
ContributorsAndré Carlos Ponce de Leon Ferreira de Carvalho, Heloisa de Arruda Camargo, Alexandre Plastino de Carvalho, Ana Carolina Lorena, Ronaldo Cristiano Prati
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds