Since its introduction in the 1980s, field-programmable gate arrays have seen a growing use over the years. Nowadays FPGAs are found in everything from planetary rovers and base transceiver stations to bitcoin miners. With the technological advancements and the growth of the market, there has been a steady flow of new models with increasing capacity. To make it possible to use this capacity in an efficient way, also the software tools have been improved. The applications in research have grown and so has the will to compare both the speed and size between different implementations that try to solve the same or similar problem. However, how to make a good comparison is not well defined. Since few research papers have source code available, such comparisons are hard to make and there is a high risk of comparing apples to pears. In this thesis, we will study the impact of different software settings and design constraints on the FPGA design flows to better understand how to report research results. This will be done by running selected designs through different EDA tools, using various settings and finally analyse the data the tools provide. At the end we will begin to define guidelines for how to report and compare implementation data, to give a good account of their performance compared to other designs.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-128663 |
Date | January 2016 |
Creators | Persson, Stefan |
Publisher | Linköpings universitet, Datorteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds