Ceramides are sphingolipids that serve as important second messengers in an increasing number of stress-induced pathways. Ceramide has long been known to affect the mitochondria, altering both morphology and physiology. Lipopolysaccharide (LPS) is a prevalent circulating inflammatory agent in obesity, potentially mediating some of the pathologies associated with weight gain. Given previous findings of TLR4-mediated ceramide accrual and ceramide-mediated mitochondrial disruption, we questioned whether ceramide is necessary for LPS-induced mitochondrial disruption. We found that LPS treatment increased gene transcript levels of ceramide synthesis enzymes and mitochondrial fission proteins and increased ceramide content in cultured myotubes and in mouse tissue. Mitochondrial respiration from permeabilized red gastrocnemius was reduced from animals receiving LPS injections when compared with those receiving vehicle (PBS). However, respiration from mice receiving both LPS and myriocin, a ceramide inhibitor, (0.3 mg/kg) was similar to PBS-injected animals. We treated murine myotubes with similar LPS conditions. These cells demonstrated increased ceramide synthesis and increased levels of mitochondrial fission with LPS treatment; these effects were mitigated with the addition of myriocin. However, in contrast to the whole gastrocnemius response in animals receiving LPS, respiration from myotubes was increased with LPS alone, and even higher with both myriocin alone and myriocin with LPS. We also sought to assess the impact of ceramide on skeletal muscle mitochondrial structure and function. A primary observation was the rapid and dramatic division of mitochondria in ceramide-treated cells. This effect is likely a result of increased Drp1 action, as ceramide increased Drp1 expression and Drp1 inhibition prevented ceramide-induced mitochondrial fission. Further, we found that ceramide treatment reduced mitochondrial O2 consumption (i.e., respiration) in cultured myotubes and permeabilized red gastrocnemius muscle fiber bundles. Ceramide treatment also increased H2O2 levels and reduced Akt/PKB phosphorylation in myotubes. However, inhibition of mitochondrial fission via Drp1 knockdown completely protected the myotubes and fiber bundles from ceramide-induced metabolic disruption, including maintained mitochondrial respiration, reduced H2O2 levels, and unaffected insulin signaling. These data suggest that the forced and sustained mitochondrial fission that results from ceramide accrual may alter metabolic function in skeletal muscle, which is a prominent site not only of energy demand (via the mitochondria), but also of ceramide accrual with weight gain.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6494 |
Date | 01 December 2014 |
Creators | Hansen, Melissa Ellen |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0019 seconds