Return to search

Thermo-mechanical analysis of welding processes

Tesi per compendi de publicacions. La consulta íntegra de la tesi, inclosos els articles no comunicats públicament per drets d’autor, es pot realitzar prèvia petició a l’Arxiu de la UPC / This thesis deals with the numerical simulation of welding processes. The analysis is focused either at global level, considering the full component to be jointed, or locally, studying more in detail the heat affected zone (HAZ). Even if most of the considerations are quite general, two specific welding technologies are studied in depth: multi-pass arc welding and its extension to Shaped Metal Deposition (SMD) processes (global level analysis) and Friction Stir Welding (FSW) technology (local framework).
The analysis at global (structural component) level is performed defining the problem in the Lagrangian setting while, at local level, both Eulerian and Arbitrary Lagrangian Eulerian (ALE) frameworks are used. More specially, to model the FSW process, an apropos kinematic framework which makes use of an efficient combination of Lagrangian (pin), Eulerian (metal sheet) and ALE (stirring zone) descriptions for the different computational sub-domains is introduced for the numerical modeling. As a result, the analysis can deal with complex (non-cylindrical) pin-shapes and the extremely large deformation of the material at the HAZ without requiring any remeshing or remapping tools.
A fully coupled thermo-mechanical framework is proposed for the computational modeling of the welding processes proposed both at local and global level. A staggered algorithm based on an isothermal fractional step method is introduced.
To account for the isochoric behavior of the material when the temperature range is close to the melting point or due to the predominant deviatoric deformations induced by the visco-plastic response, a mixed finite element technology is introduced. The Variational Multi Scale (VMS) method is used to circumvent the LBB stability condition allowing the use of linear/linear P1/P1 interpolations for displacement (or velocity, ALE/Eulerian formulation) and pressure fields, respectively. The same stabilization strategy is adopted to tackle the instabilities of the temperature field, inherent characteristic of convective dominated problems (thermal analysis in ALE/Eulerian kinematic framework).
At global level, the material behavior is characterized by a thermo-elasto-viscoplastic constitutive model.
The analysis at local level is characterized by a rigid thermo-visco-plastic constitutive model. Different thermally coupled (non-Newtonian) fluid-like models as Norton-Ho¿ or Sheppard-Wright, among others are tested.
The balance of energy equation is solved in its enthalpy format for a treatment of the phase-change phenomena. An accurate definition of the heat source (laser, arc, electron beam, etc), as well as the heat generation induced by the visco-plastic dissipation or the frictional contact (Coulomb and Norton model) are described.
An ad-hoc technique to account for the use of a filler material in the shape metal deposition (SMD) process is developed. The element activation methodology proposed allows for an accurate layer-by-layer deposition of the material without introducing spurious stress/strain fields.
To better understand the material flow pattern in the stirring zone, a (Lagrangian based) particle tracing is carried out while post-processing FSW results. The final numerical tool developed to study the FSW process is able to give detailed information concerning the characteristics of the weld and their relationship with the welding process parameters (e.g. advancing and rotation velocities).
The simulation tool presented in this work is validated with analytical results and calibrated with experimental data.
This thesis is a collection of research articles supplemented with some introductory chapters summarizing the state-of-the-art, the motivations and objectives of the work as well as the main contributions and some suggested lines for future work. It comprises 7 already-published (or accepted for publication) peer-review journal articles which are integral part of this work.

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/276167
Date12 March 2014
CreatorsDialami, Narges
ContributorsCervera Ruiz, Miguel, Chiumenti, M. (Michèle), Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageCatalan
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format155 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Page generated in 0.0018 seconds