<p>The aquatic plant <i>Ipomoea aquatica</i> is a popular vegetable in Southeast Asia, often cultivated in nutrient rich and polluted waters. The overall aim of this thesis was to estimate potential risks for human health and reduced plant growth due to accumulation and toxicity of total-Hg, methyl-Hg, Cd and Pb.</p><p>In plants from cultivations in Thailand, the concentrations of Cd and Pb in the shoots were well beneath recommended maximum values for human consumption, but at some sites the Hg concentrations were high. It was demonstrated that <i>I. aquatica</i> has the capacity to accumulate much higher Cd and Pb concentrations in the shoots than found in field-cultivations, before exhibiting toxic symptoms. The Hg concentrations, however, occasionally reached levels that are toxic for the plant. Up to11% of total-Hg was methyl-Hg, the most toxic Hg species, though at one site it was 50-100%. To study if methyl-Hg is formed in <i>I.</i> <i>aquatica</i>, plants were exposed to inorganic Hg through the roots. Of the Hg that reached the young, metabolically active parts of the shoots, a part was transformed to methyl-Hg. A major proportion of absorbed metals was retained in the roots, which had a high tolerance for high internal metal concentrations. </p><p>The nutrient level did influence accumulation and effects of Hg, Cd and Pb in<i> I. aquatica</i>. Low external nutrient levels resulted in increased metal accumulation in the shoots and in metal-induced toxic effects in the plant at low external metal levels. A generous supply of sulphur or nitrogen induced formation of thiol-rich peptides in <i>I. aquatica</i>, compounds that have a metal detoxifying effect in plants. </p><p>To conclude, the levels of Cd and Pb in field cultivated <i>I. aquatica</i> do not pose any apparent threat to human health or risk for reduced plant growth. The levels of Hg however, were high at some sites and could be a health threat, for children and foetuses in particular, and especially considering the presence of methyl-Hg. The use of fertilizers is favourable as it reduces the risk for increased metal concentrations in <i>I.</i> <i>aquatica</i> and for reduced crop yields. </p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:su-7625 |
Date | January 2008 |
Creators | Göthberg, Agneta |
Publisher | Stockholm University, Department of Applied Environmental Science (ITM), Stockholm : Institutionen för tillämpad miljövetenskap (ITM) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Page generated in 0.0011 seconds