Metal Matrix Composites (MMCs) are used as structural materials because of their ability to have a combination of high strength and good ductility. A common problem with MMCs utiliz-ing vastly different materials is the difficulty in forming a strong matrix/reinforcement interface without suffering extensive dissolution, debonding, or chemical reactions between the compo-nents. In this work, a nickel base amorphous particulate reinforced crystalline nickel matrix composite is processed. The reinforcement, an equimolar NiW amorphous powder, was synthe-sized using the mechanical alloying process. The amorphous and crystalline nickel powders were blended in varying volume fractions and then consolidated using hot-isostatic pressing (HIP). This work reveals that the amorphous NiW reinforcement provides strength and hardness to the ductile Ni matrix while simultaneously maintaining a strong interfacial bond due to the similar chemistry of the two components. The strengthening achieved in the composite is attrib-uted to the particulate/matrix boundary strengthening. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/30793 |
Date | 13 January 2006 |
Creators | Wensley, Charles Alexander |
Contributors | Materials Science and Engineering, Reynolds, William T. Jr., Kampe, Stephen L., Aning, Alexander O. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | CWensley-thesis.pdf |
Page generated in 0.0017 seconds