Patients on peritoneal dialysis (PD) are reliant on the peritoneum to provide a semi-permeable barrier to allow for dialysis (solute clearance), salt and water removal (ultrafiltration). PD patients are at risk of developing peritoneal fibrosis and angiogenesis which can lead to a decline in peritoneal membrane function. Specifically, PD patients develop increased solute transport and decreased osmotic conductance leading to ultrafiltration failure. Peritoneal angiogenesis is the leading factor that results in augmented peritoneal membrane solute transport which is associated with worse outcomes – increased risk of mortality and PD technique failure. Transforming growth factor beta (TGFB) is one of the primary cytokines involved in inducing epithelial to mesenchymal transition (EMT) and fibrosis. We hypothesize that PD leads to injury of the epithelial lining of the peritoneum – the mesothelial cells. These cells undergo a transition process and transitioned mesothelium are a source for angiogenic and fibrogenic growth factors.
Matrix Metalloproteinase (MMP) 9 is an angiogeneic factor and has been observed to correlate with increased expression of vascular endothelial growth factor (VEGF). MMP9 has the ability to cleave and activate membrane bound factors such as E-cadherin and b-catenin respectively. There is substantial evidence that the canonical WNT/b-catenin pathway is active during fibrosis, and angiogenesis in different biological contexts. Thus, we investigated the role of MMP9 and WNT signaling in peritoneal angiogenesis. Limited evidence exists describing the role of noncanonical WNT signaling but some reports suggest that non-canonical WNT signaling inhibits WNT/b-catenin signaling. Non-canonical WNT5A has differential effects based on receptor context and has been shown to block WNT/b-catenin signaling in the presence of Receptor Tyrosine Kinase Like Orphan Receptor 2 (Ror2). The overall hypothesis of this PhD thesis is that MMP9 and WNT signaling play a key role in inducing peritoneal angiogenesis and are associated with changes in peritoneal membrane function. We expect WNT5A and Ror2 to protect against peritoneal membrane injury.
From the overnight effluent of stable PD patients, we cultured mesothelial cells and assayed these for expression of MMP and WNT related genes. MMP9 and WNT1 gene expression were observed to be strongly correlated with peritoneal membrane solute transport in patients on PD. WNT2 mRNA was also positively correlated with peritoneal solute transport. We overexpressed MMP9 in the mouse peritoneum to demonstrate its role in angiogenesis and confirmed these findings using MMP9 -/- mice. In addition to this, we have shown a novel mechanism by which MMP9 induces angiogenesis by E-cadherin cleavage and b-catenin mediated signaling. The observed cross-talk between MMP9 and b-catenin prompted investigation of the activation of canonical WNT/b-catenin signaling in development of peritoneal membrane injury. In an experimental model of TGFB induced pertioneal injury, we confirmed the activation of WNT/b-catenin signaling. In addition to this we, we blocked the WNT pathway and observed that WNT/b-catenin signaling is required to induce peritoneal angiogenesis. WNT5A mRNA was downregulated during TGFB induced injury suggesting a more protective role. Furthermore, several studies have demonstrated its ability to antagonize the WNT/b-catenin signaling pathway. We demonstrated that WNT5A protected against angiogenesis by blocking the canonical WNT pathway. WNT5A is thought to antagonize the WNT/b-catenin signaling pathway by signaling through receptor Ror2. In cell culture, we overexpressed TGFB and blocked Ror2. This resulted in elevated levels of VEGF and fibronectin suggesting that Ror2 is involved in mediating protection. Therefore, Ror2 possesses the ability to regulate VEGF and may be a potential candidate by which WNT5A mediates its protective effects.
In conclusion, our findings identified MMP9 and WNT1 as potential biomarkers of increased peritoneal solute transport in patients that are on PD. We have also found a novel mechanism by which MMP9 interacts with b-catenin to induce peritoneal angiogenesis and have provided a first look at WNT/b-catenin signaling in peritoneal angiogenesis. Lastly, we have shown WNT5A to protect against peritoneal angiogenesis. Taken together, our findings are not only significant to the realm of PD research but hold wide applicability to research in the biomedical sciences. / Thesis / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22089 |
Date | 11 1900 |
Creators | Padwal, Manreet |
Contributors | Margetts, Peter, Medical Sciences |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.007 seconds