Nikolai Tesla's revolutionary experiments demonstrated the possible benefits of transmitting power wirelessly as early as 1891. Applications for the military, consumers, emergency personnel, remote sensors, and others use Tesla’s discovery of wireless power. Wireless power transmission (WPT) has the potential to be a common source of consumable energy, but it will only receive serious consideration if the transmit and receive systems are extremely efficient and capable of delivering usable amounts of power. Research has been conducted to improve the efficiency and performance of nearly every aspect of WPT systems, but the relatively new field of metamaterials (MTMs) has yet to play a dominate role in improving system performance. A gradient index (GRIN) MTM lens was designed using Ansoft’s High Frequency Structure Simulator (HFSS) to improve antenna gain and thereby increase WPT system performance. A simple WPT demonstration system using microstrip patch antennas (MPAs) confirmed the benefits of the GRIN MTM lens. The WPT demonstration system, MPAs, and GRIN MTM lens were constructed and experimentally tested near 2.45 GHz. The theoretical and experimental gain improvement of the MPA due to the GRIN MTM lens is 5.91 dB and 7.06 dB, respectively.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2095 |
Date | 01 July 2013 |
Creators | Heffernan, Travis Jade |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.002 seconds